--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co./dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co./MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co./MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co./MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co./MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co./MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co./MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co./MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co./MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co./MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co./MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co./MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co./MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co./MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co./MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co./MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co./MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co./MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co./MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co./MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co./MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co./MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co./MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co./MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co./MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `regression-w-m-vote-epoch-2` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline from transformers.pipelines import TextClassificationPipeline class TextRegressionPipeline(TextClassificationPipeline): """ Class based on the TextClassificationPipeline from transformers. The difference is that instead of being based on a classifier, it is based on a regressor. You can specify the regression threshold when you call the pipeline or when you instantiate the pipeline. """ def __init__(self, **kwargs): """ Builds a new Pipeline based on regression. regression_threshold: Optional(float). If None, the pipeline will simply output the score. If set to a specific value, the output will be both the score and the label. """ self.regression_threshold = kwargs.pop("regression_threshold", None) super().__init__(**kwargs) def __call__(self, *args, **kwargs): """ You can also specify the regression threshold when you call the pipeline. regression_threshold: Optional(float). If None, the pipeline will simply output the score. If set to a specific value, the output will be both the score and the label. """ self.regression_threshold_call = kwargs.pop("regression_threshold", None) result = super().__call__(*args, **kwargs) return result def postprocess(self, model_outputs, function_to_apply=None, return_all_scores=False): outputs = model_outputs["logits"][0] outputs = outputs.numpy() scores = outputs score = scores[0] regression_threshold = self.regression_threshold # override the specific threshold if it is specified in the call if self.regression_threshold_call: regression_threshold = self.regression_threshold_call if regression_threshold: return {"label": 'racist' if score > regression_threshold else 'non-racist', "score": score} else: return {"score": score} model_name = 'regression-w-m-vote-epoch-2' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = TextRegressionPipeline(model=model, tokenizer=tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] # just get the score of regression print(pipe(texts)) # [{'score': 0.8367272}, {'score': 0.4402479}] # or also specify a threshold to cut racist/non-racist print(pipe(texts, regression_threshold=0.9)) # [{'label': 'non-racist', 'score': 0.8367272}, {'label': 'non-racist', 'score': 0.4402479}] ``` For more details, see https://github.com/preyero/neatclass22