Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,66 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-sa-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-nc-sa-4.0
|
3 |
+
datasets:
|
4 |
+
- HumanF-MarkrAI/Korean-RAG-ver2
|
5 |
+
language:
|
6 |
+
- ko
|
7 |
+
tags:
|
8 |
+
- Retrieval Augmented Generation
|
9 |
+
- RAG
|
10 |
+
- Multi-domain
|
11 |
---
|
12 |
+
|
13 |
+
# MarkrAI/RAG-KO-Mixtral-7Bx2-v1.15
|
14 |
+
|
15 |
+
# Model Details
|
16 |
+
|
17 |
+
## Model Developers
|
18 |
+
MarkrAI - AI Researchers
|
19 |
+
|
20 |
+
## Base Model
|
21 |
+
[DopeorNope/Ko-Mixtral-v1.3-MoE-7Bx2](https://huggingface.co/DopeorNope/Ko-Mixtral-v1.3-MoE-7Bx2).
|
22 |
+
|
23 |
+
## Instruction tuning Method
|
24 |
+
Using QLoRA.
|
25 |
+
```
|
26 |
+
4-bit quantization
|
27 |
+
Lora_r: 64
|
28 |
+
Lora_alpha: 64
|
29 |
+
Lora_dropout: 0.05
|
30 |
+
Lora_target_modules: [embed_tokens, q_proj, k_proj, v_proj, o_proj, gate, w1, w2, w3, lm_head]
|
31 |
+
```
|
32 |
+
|
33 |
+
## Hyperparameters
|
34 |
+
```
|
35 |
+
Epoch: 3
|
36 |
+
Batch size: 64
|
37 |
+
Learning_rate: 1e-5
|
38 |
+
Learning scheduler: linear
|
39 |
+
Warmup_ratio: 0.06
|
40 |
+
```
|
41 |
+
|
42 |
+
## Datasets
|
43 |
+
Private datasets: [HumanF-MarkrAI/Korean-RAG-ver2](https://huggingface.co/datasets/HumanF-MarkrAI/Korean-RAG-ver2)
|
44 |
+
```
|
45 |
+
Aihub datasets ํ์ฉํ์ฌ์ ์ ์ํจ.
|
46 |
+
```
|
47 |
+
|
48 |
+
## Implmentation Code
|
49 |
+
```
|
50 |
+
### KO-Platypus
|
51 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
52 |
+
import torch
|
53 |
+
|
54 |
+
repo = "MarkrAI/RAG-KO-Mixtral-7Bx2-v1.15"
|
55 |
+
OpenOrca = AutoModelForCausalLM.from_pretrained(
|
56 |
+
repo,
|
57 |
+
return_dict=True,
|
58 |
+
torch_dtype=torch.float16,
|
59 |
+
device_map='auto'
|
60 |
+
)
|
61 |
+
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
|
62 |
+
|
63 |
+
```
|
64 |
+
|
65 |
+
# Model Benchmark
|
66 |
+
- Coming soon...
|