File size: 2,102 Bytes
1dfb024 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: mit
base_model: facebook/bart-large-xsum
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: bart-large-xsum-samsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: validation
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 54.3742
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-xsum-samsum
This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co./facebook/bart-large-xsum) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4330
- Rouge1: 54.3742
- Rouge2: 29.1289
- Rougel: 44.1238
- Gen Len: 29.8973
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|
| No log | 0.9989 | 460 | 0.4542 | 53.4662 | 28.4545 | 43.6636 | 29.6174 |
| 0.7083 | 2.0 | 921 | 0.4415 | 53.6674 | 28.8109 | 44.0343 | 29.2665 |
| 0.3748 | 2.9967 | 1380 | 0.4330 | 54.3742 | 29.1289 | 44.1238 | 29.8973 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|