MarcoAland commited on
Commit
0c1c64a
·
verified ·
1 Parent(s): 3b43cc3

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,436 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy
8
+ - dot_accuracy
9
+ - manhattan_accuracy
10
+ - euclidean_accuracy
11
+ - max_accuracy
12
+ pipeline_tag: sentence-similarity
13
+ tags:
14
+ - sentence-transformers
15
+ - sentence-similarity
16
+ - feature-extraction
17
+ - generated_from_trainer
18
+ - dataset_size:45000
19
+ - loss:MultipleNegativesRankingLoss
20
+ widget:
21
+ - source_sentence: Seorang pria sedang tidur.
22
+ sentences:
23
+ - Seorang pria berambut panjang memegang semacam pita.
24
+ - Seorang pria tidur di sofa di pinggir jalan.
25
+ - Seekor hewan yang mencoba mengeringkan dirinya.
26
+ - source_sentence: Ada beberapa orang yang hadir.
27
+ sentences:
28
+ - Orang tua tidur sendirian di pesawat dengan tas di pangkuannya.
29
+ - Seorang wanita dengan rambut pirang disanggul dan mengenakan kacamata hitam berdiri
30
+ di dekat tenda hitam dan putih.
31
+ - Tiga peselancar angin di lautan, satu di antaranya sedang mengudara.
32
+ - source_sentence: Ada dua anjing di luar.
33
+ sentences:
34
+ - Seorang pria mengenakan kemeja berkancing biru dan celana panjang sedang tidur
35
+ di etalase toko.
36
+ - Seekor anjing putih berjalan melintasi rerumputan berdaun lebat sementara seekor
37
+ anjing coklat hendak menggigitnya.
38
+ - Dua anjing krem ​​​​sedang bermain di salju.
39
+ - source_sentence: Seorang wanita sedang memainkan gitar di atas panggung dengan latar
40
+ belakang hijau.
41
+ sentences:
42
+ - Warna hijau tidak ada dalam bingkai sama sekali.
43
+ - Seorang wanita dan seorang pria memainkan alat musik di trotoar kota.
44
+ - Wanita itu sedang memainkan musik.
45
+ - source_sentence: Seorang anak laki-laki sedang membaca.
46
+ sentences:
47
+ - Seorang pria sedang tidur di kursi dan dikelilingi oleh banyak ayam di dalam kandang.
48
+ - Seorang anak baru saja memukul bola saat bermain T-ball.
49
+ - Anak laki-laki kecil duduk di kursi modern yang besar, membaca buku anak-anak.
50
+ model-index:
51
+ - name: SentenceTransformer based on BAAI/bge-m3
52
+ results:
53
+ - task:
54
+ type: triplet
55
+ name: Triplet
56
+ dataset:
57
+ name: model evaluation
58
+ type: model-evaluation
59
+ metrics:
60
+ - type: cosine_accuracy
61
+ value: 0.9596
62
+ name: Cosine Accuracy
63
+ - type: dot_accuracy
64
+ value: 0.0404
65
+ name: Dot Accuracy
66
+ - type: manhattan_accuracy
67
+ value: 0.9592
68
+ name: Manhattan Accuracy
69
+ - type: euclidean_accuracy
70
+ value: 0.9596
71
+ name: Euclidean Accuracy
72
+ - type: max_accuracy
73
+ value: 0.9596
74
+ name: Max Accuracy
75
+ ---
76
+
77
+ # SentenceTransformer based on BAAI/bge-m3
78
+
79
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
80
+
81
+ ## Model Details
82
+
83
+ ### Model Description
84
+ - **Model Type:** Sentence Transformer
85
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
86
+ - **Maximum Sequence Length:** 8192 tokens
87
+ - **Output Dimensionality:** 1024 tokens
88
+ - **Similarity Function:** Cosine Similarity
89
+ <!-- - **Training Dataset:** Unknown -->
90
+ <!-- - **Language:** Unknown -->
91
+ <!-- - **License:** Unknown -->
92
+
93
+ ### Model Sources
94
+
95
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
96
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
97
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
98
+
99
+ ### Full Model Architecture
100
+
101
+ ```
102
+ SentenceTransformer(
103
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
104
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
105
+ (2): Normalize()
106
+ )
107
+ ```
108
+
109
+ ## Usage
110
+
111
+ ### Direct Usage (Sentence Transformers)
112
+
113
+ First install the Sentence Transformers library:
114
+
115
+ ```bash
116
+ pip install -U sentence-transformers
117
+ ```
118
+
119
+ Then you can load this model and run inference.
120
+ ```python
121
+ from sentence_transformers import SentenceTransformer
122
+
123
+ # Download from the 🤗 Hub
124
+ model = SentenceTransformer("MarcoAland/Indonesian-bge-m3")
125
+ # Run inference
126
+ sentences = [
127
+ 'Seorang anak laki-laki sedang membaca.',
128
+ 'Anak laki-laki kecil duduk di kursi modern yang besar, membaca buku anak-anak.',
129
+ 'Seorang anak baru saja memukul bola saat bermain T-ball.',
130
+ ]
131
+ embeddings = model.encode(sentences)
132
+ print(embeddings.shape)
133
+ # [3, 1024]
134
+
135
+ # Get the similarity scores for the embeddings
136
+ similarities = model.similarity(embeddings, embeddings)
137
+ print(similarities.shape)
138
+ # [3, 3]
139
+ ```
140
+
141
+ <!--
142
+ ### Direct Usage (Transformers)
143
+
144
+ <details><summary>Click to see the direct usage in Transformers</summary>
145
+
146
+ </details>
147
+ -->
148
+
149
+ <!--
150
+ ### Downstream Usage (Sentence Transformers)
151
+
152
+ You can finetune this model on your own dataset.
153
+
154
+ <details><summary>Click to expand</summary>
155
+
156
+ </details>
157
+ -->
158
+
159
+ <!--
160
+ ### Out-of-Scope Use
161
+
162
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
163
+ -->
164
+
165
+ ## Evaluation
166
+
167
+ ### Metrics
168
+
169
+ #### Triplet
170
+ * Dataset: `model-evaluation`
171
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
172
+
173
+ | Metric | Value |
174
+ |:-------------------|:-----------|
175
+ | cosine_accuracy | 0.9596 |
176
+ | dot_accuracy | 0.0404 |
177
+ | manhattan_accuracy | 0.9592 |
178
+ | euclidean_accuracy | 0.9596 |
179
+ | **max_accuracy** | **0.9596** |
180
+
181
+ <!--
182
+ ## Bias, Risks and Limitations
183
+
184
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
185
+ -->
186
+
187
+ <!--
188
+ ### Recommendations
189
+
190
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
191
+ -->
192
+
193
+ ## Training Details
194
+
195
+ ### Training Dataset
196
+
197
+ #### Unnamed Dataset
198
+
199
+
200
+ * Size: 45,000 training samples
201
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
202
+ * Approximate statistics based on the first 1000 samples:
203
+ | | anchor | positive | negative |
204
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
205
+ | type | string | string | string |
206
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.02 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.08 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.47 tokens</li><li>max: 52 tokens</li></ul> |
207
+ * Samples:
208
+ | anchor | positive | negative |
209
+ |:----------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|
210
+ | <code>Dua pengendara sepeda motor berlomba di lintasan miring.</code> | <code>Lintasan pada gambar tidak sepenuhnya datar.</code> | <code>Pengendara sepeda motor memakai sarung tangannya sebelum balapan</code> |
211
+ | <code>Pria itu ada di luar.</code> | <code>Seorang pria berpakaian hitam sedang memegang kantong sampah hitam dan memungut barang-barang dari tempat pembuangan tanah.</code> | <code>Seorang pria mengenakan jas hitam dikelilingi oleh banyak orang di dalam sebuah gedung dengan patung dada orang di dinding.</code> |
212
+ | <code>Orang-orang ada di luar ruangan.</code> | <code>Ada orang-orang yang menonton band bermain di luar ruangan dan seorang anak berada di latar depan.</code> | <code>Dua orang bertopi baseball sedang duduk di dalam ruang kantor besar dan menatap layar komputer.</code> |
213
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
214
+ ```json
215
+ {
216
+ "scale": 20.0,
217
+ "similarity_fct": "cos_sim"
218
+ }
219
+ ```
220
+
221
+ ### Evaluation Dataset
222
+
223
+ #### Unnamed Dataset
224
+
225
+
226
+ * Size: 5,000 evaluation samples
227
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
228
+ * Approximate statistics based on the first 1000 samples:
229
+ | | anchor | positive | negative |
230
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
231
+ | type | string | string | string |
232
+ | details | <ul><li>min: 4 tokens</li><li>mean: 9.88 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.1 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.69 tokens</li><li>max: 46 tokens</li></ul> |
233
+ * Samples:
234
+ | anchor | positive | negative |
235
+ |:----------------------------------------|:----------------------------------------------------------|:--------------------------------------------------------------------------------|
236
+ | <code>Anjing itu sedang berlari.</code> | <code>Seekor anjing coklat mengejar bola di rumput</code> | <code>Anjing itu berbaring telentang di dekat bola hijau.</code> |
237
+ | <code>Seorang pria sedang tidur.</code> | <code>Seorang pria sedang tidur siang di kereta.</code> | <code>Pria muda bekerja di laboratorium sains.</code> |
238
+ | <code>Seorang pria sedang tidur.</code> | <code>Seorang pria sedang tidur di dalam bus.</code> | <code>seorang pria mendayung ganilla menyusuri jalan setapak yang berair</code> |
239
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
240
+ ```json
241
+ {
242
+ "scale": 20.0,
243
+ "similarity_fct": "cos_sim"
244
+ }
245
+ ```
246
+
247
+ ### Training Hyperparameters
248
+ #### Non-Default Hyperparameters
249
+
250
+ - `eval_strategy`: steps
251
+ - `per_device_train_batch_size`: 4
252
+ - `per_device_eval_batch_size`: 4
253
+ - `num_train_epochs`: 1
254
+ - `warmup_ratio`: 0.1
255
+ - `batch_sampler`: no_duplicates
256
+
257
+ #### All Hyperparameters
258
+ <details><summary>Click to expand</summary>
259
+
260
+ - `overwrite_output_dir`: False
261
+ - `do_predict`: False
262
+ - `eval_strategy`: steps
263
+ - `prediction_loss_only`: True
264
+ - `per_device_train_batch_size`: 4
265
+ - `per_device_eval_batch_size`: 4
266
+ - `per_gpu_train_batch_size`: None
267
+ - `per_gpu_eval_batch_size`: None
268
+ - `gradient_accumulation_steps`: 1
269
+ - `eval_accumulation_steps`: None
270
+ - `learning_rate`: 5e-05
271
+ - `weight_decay`: 0.0
272
+ - `adam_beta1`: 0.9
273
+ - `adam_beta2`: 0.999
274
+ - `adam_epsilon`: 1e-08
275
+ - `max_grad_norm`: 1.0
276
+ - `num_train_epochs`: 1
277
+ - `max_steps`: -1
278
+ - `lr_scheduler_type`: linear
279
+ - `lr_scheduler_kwargs`: {}
280
+ - `warmup_ratio`: 0.1
281
+ - `warmup_steps`: 0
282
+ - `log_level`: passive
283
+ - `log_level_replica`: warning
284
+ - `log_on_each_node`: True
285
+ - `logging_nan_inf_filter`: True
286
+ - `save_safetensors`: True
287
+ - `save_on_each_node`: False
288
+ - `save_only_model`: False
289
+ - `restore_callback_states_from_checkpoint`: False
290
+ - `no_cuda`: False
291
+ - `use_cpu`: False
292
+ - `use_mps_device`: False
293
+ - `seed`: 42
294
+ - `data_seed`: None
295
+ - `jit_mode_eval`: False
296
+ - `use_ipex`: False
297
+ - `bf16`: False
298
+ - `fp16`: False
299
+ - `fp16_opt_level`: O1
300
+ - `half_precision_backend`: auto
301
+ - `bf16_full_eval`: False
302
+ - `fp16_full_eval`: False
303
+ - `tf32`: None
304
+ - `local_rank`: 0
305
+ - `ddp_backend`: None
306
+ - `tpu_num_cores`: None
307
+ - `tpu_metrics_debug`: False
308
+ - `debug`: []
309
+ - `dataloader_drop_last`: False
310
+ - `dataloader_num_workers`: 0
311
+ - `dataloader_prefetch_factor`: None
312
+ - `past_index`: -1
313
+ - `disable_tqdm`: False
314
+ - `remove_unused_columns`: True
315
+ - `label_names`: None
316
+ - `load_best_model_at_end`: False
317
+ - `ignore_data_skip`: False
318
+ - `fsdp`: []
319
+ - `fsdp_min_num_params`: 0
320
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
321
+ - `fsdp_transformer_layer_cls_to_wrap`: None
322
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
323
+ - `deepspeed`: None
324
+ - `label_smoothing_factor`: 0.0
325
+ - `optim`: adamw_torch
326
+ - `optim_args`: None
327
+ - `adafactor`: False
328
+ - `group_by_length`: False
329
+ - `length_column_name`: length
330
+ - `ddp_find_unused_parameters`: None
331
+ - `ddp_bucket_cap_mb`: None
332
+ - `ddp_broadcast_buffers`: False
333
+ - `dataloader_pin_memory`: True
334
+ - `dataloader_persistent_workers`: False
335
+ - `skip_memory_metrics`: True
336
+ - `use_legacy_prediction_loop`: False
337
+ - `push_to_hub`: False
338
+ - `resume_from_checkpoint`: None
339
+ - `hub_model_id`: None
340
+ - `hub_strategy`: every_save
341
+ - `hub_private_repo`: False
342
+ - `hub_always_push`: False
343
+ - `gradient_checkpointing`: False
344
+ - `gradient_checkpointing_kwargs`: None
345
+ - `include_inputs_for_metrics`: False
346
+ - `eval_do_concat_batches`: True
347
+ - `fp16_backend`: auto
348
+ - `push_to_hub_model_id`: None
349
+ - `push_to_hub_organization`: None
350
+ - `mp_parameters`:
351
+ - `auto_find_batch_size`: False
352
+ - `full_determinism`: False
353
+ - `torchdynamo`: None
354
+ - `ray_scope`: last
355
+ - `ddp_timeout`: 1800
356
+ - `torch_compile`: False
357
+ - `torch_compile_backend`: None
358
+ - `torch_compile_mode`: None
359
+ - `dispatch_batches`: None
360
+ - `split_batches`: None
361
+ - `include_tokens_per_second`: False
362
+ - `include_num_input_tokens_seen`: False
363
+ - `neftune_noise_alpha`: None
364
+ - `optim_target_modules`: None
365
+ - `batch_eval_metrics`: False
366
+ - `eval_on_start`: False
367
+ - `batch_sampler`: no_duplicates
368
+ - `multi_dataset_batch_sampler`: proportional
369
+
370
+ </details>
371
+
372
+ ### Training Logs
373
+ | Epoch | Step | Training Loss | loss | model-evaluation_max_accuracy |
374
+ |:------:|:----:|:-------------:|:------:|:-----------------------------:|
375
+ | 0.0089 | 100 | 0.81 | 0.5528 | - |
376
+ | 0.0178 | 200 | 0.5397 | 0.4948 | - |
377
+ | 0.0267 | 300 | 0.5349 | 0.5147 | - |
378
+ | 0.0356 | 400 | 0.5342 | 0.5475 | - |
379
+ | 0.0444 | 500 | 0.4433 | 0.5679 | 0.9596 |
380
+
381
+
382
+ ### Framework Versions
383
+ - Python: 3.10.12
384
+ - Sentence Transformers: 3.0.1
385
+ - Transformers: 4.42.4
386
+ - PyTorch: 2.3.1+cu121
387
+ - Accelerate: 0.32.1
388
+ - Datasets: 2.20.0
389
+ - Tokenizers: 0.19.1
390
+
391
+ ## Citation
392
+
393
+ ### BibTeX
394
+
395
+ #### Sentence Transformers
396
+ ```bibtex
397
+ @inproceedings{reimers-2019-sentence-bert,
398
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
399
+ author = "Reimers, Nils and Gurevych, Iryna",
400
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
401
+ month = "11",
402
+ year = "2019",
403
+ publisher = "Association for Computational Linguistics",
404
+ url = "https://arxiv.org/abs/1908.10084",
405
+ }
406
+ ```
407
+
408
+ #### MultipleNegativesRankingLoss
409
+ ```bibtex
410
+ @misc{henderson2017efficient,
411
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
412
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
413
+ year={2017},
414
+ eprint={1705.00652},
415
+ archivePrefix={arXiv},
416
+ primaryClass={cs.CL}
417
+ }
418
+ ```
419
+
420
+ <!--
421
+ ## Glossary
422
+
423
+ *Clearly define terms in order to be accessible across audiences.*
424
+ -->
425
+
426
+ <!--
427
+ ## Model Card Authors
428
+
429
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
430
+ -->
431
+
432
+ <!--
433
+ ## Model Card Contact
434
+
435
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
436
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.42.4",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed7f4fec9131c0ac1a96a2735332d2ee23d7bdf29eda206ef22b2107dbb87ca6
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }