|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch InternLM2 model.""" |
|
import math |
|
import queue |
|
import threading |
|
import warnings |
|
import copy |
|
from typing import List, Optional, Tuple, Union |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import InterpolationMode |
|
from PIL import Image |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from einops import rearrange |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
SequenceClassifierOutputWithPast, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers import StoppingCriteria, StoppingCriteriaList |
|
try: |
|
from transformers.generation.streamers import BaseStreamer |
|
except: |
|
BaseStreamer = None |
|
|
|
from .configuration_internlm import InternLMConfig as InternLM2Config |
|
from .build_mlp import build_vision_tower, build_vision_projector, PLoRA |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "InternLM2Config" |
|
|
|
|
|
|
|
class StoppingCriteriaSub(StoppingCriteria): |
|
def __init__(self, stops=[], encounters=1): |
|
super().__init__() |
|
self.stops = stops |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor): |
|
for stop in self.stops: |
|
if torch.all((stop == input_ids[0][-len(stop):])).item(): |
|
return True |
|
|
|
return False |
|
|
|
def text_gen(inst, tokenizer, model, stopping_criteria, temp=1.0, rept=1.005, sample=True): |
|
d = f"{inst}" |
|
input_ids = tokenizer(d, return_tensors="pt")["input_ids"] |
|
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["[UNUSED_TOKEN_145]"])[0]] |
|
with torch.no_grad(): |
|
generate = model.generate(input_ids.cuda(), |
|
do_sample=sample, |
|
temperature=temp, |
|
repetition_penalty=rept, |
|
max_new_tokens=1000, |
|
top_p=0.8, |
|
top_k=50, |
|
eos_token_id=eos_token_id, |
|
stopping_criteria=stopping_criteria,) |
|
|
|
res = tokenizer.decode(generate[0].tolist(), skip_special_tokens=True) |
|
return (res) |
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 |
|
): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) |
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
|
|
class InternLM2RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
InternLM2RMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
class InternLM2RotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding): |
|
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
t = t / self.scaling_factor |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding): |
|
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling. |
|
Credits to the Reddit users /u/bloc97 and /u/emozilla. |
|
""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len > self.max_position_embeddings: |
|
base = self.base * ( |
|
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) |
|
) ** (self.dim / (self.dim - 2)) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids): |
|
|
|
cos = cos.squeeze(1).squeeze(0) |
|
sin = sin.squeeze(1).squeeze(0) |
|
cos = cos.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1) |
|
sin = sin.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1) |
|
if q.size(2) == 1: |
|
q_embed = (q * cos[:, :, -1:, :]) + (rotate_half(q) * sin[:, :, -1:, :]) |
|
else: |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
|
if k.size(2) == 1: |
|
k_embed = (k * cos[:, :, -1:, :]) + (rotate_half(k) * sin[:, :, -1:, :]) |
|
else: |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
|
return q_embed, k_embed |
|
|
|
|
|
class InternLM2MLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
|
|
|
|
|
|
|
|
self.w1 = PLoRA(self.hidden_size, self.intermediate_size, bias=False, |
|
lora_r=256, lora_alpha=256, lora_len=256) |
|
self.w3 = PLoRA(self.hidden_size, self.intermediate_size, bias=False, |
|
lora_r=256, lora_alpha=256, lora_len=256) |
|
self.w2 = PLoRA(self.intermediate_size, self.hidden_size, bias=False, |
|
lora_r=256, lora_alpha=256, lora_len=256) |
|
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x, im_mask): |
|
down_proj = self.w2(self.act_fn(self.w1(x, im_mask)) * self.w3(x, im_mask), im_mask) |
|
|
|
return down_proj |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class InternLM2Attention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: InternLM2Config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.is_causal = True |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
|
|
|
|
self.wqkv = PLoRA( |
|
self.hidden_size, |
|
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim, |
|
bias=config.bias, |
|
lora_r=256, lora_alpha=256, lora_len=256 |
|
) |
|
|
|
|
|
self.wo = PLoRA(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias, |
|
lora_r=256, lora_alpha=256, lora_len=256) |
|
self._init_rope() |
|
|
|
def _init_rope(self): |
|
if self.config.rope_scaling is None: |
|
self.rotary_emb = InternLM2RotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.config.rope_theta, |
|
) |
|
else: |
|
scaling_type = self.config.rope_scaling["type"] |
|
scaling_factor = self.config.rope_scaling["factor"] |
|
if scaling_type == "dynamic": |
|
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.config.rope_theta, |
|
scaling_factor=scaling_factor |
|
) |
|
else: |
|
raise ValueError("Currently we only support rotary embedding's type being 'dynamic'.") |
|
return self.rotary_emb |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
im_mask: Optional[Tuple[torch.Tensor]] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. " |
|
"Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
qkv_states = self.wqkv(hidden_states, im_mask) |
|
|
|
qkv_states = rearrange( |
|
qkv_states, |
|
"b q (h gs d) -> b q h gs d", |
|
gs=2 + self.num_key_value_groups, |
|
d=self.head_dim, |
|
) |
|
|
|
query_states = qkv_states[..., : self.num_key_value_groups, :] |
|
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d") |
|
key_states = qkv_states[..., -2, :] |
|
value_states = qkv_states[..., -1, :] |
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.wo(attn_output, im_mask) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class InternLM2FlashAttention2(InternLM2Attention): |
|
""" |
|
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
im_mask: Optional[Tuple[torch.Tensor]] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. " |
|
"Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
|
|
attention_mask = kwargs.pop("padding_mask") |
|
|
|
output_attentions = False |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
qkv_states = self.wqkv(hidden_states, im_mask) |
|
|
|
qkv_states = rearrange( |
|
qkv_states, |
|
"b q (h gs d) -> b q h gs d", |
|
gs=self.num_heads + 2 * self.num_key_value_heads, |
|
d=self.head_dim, |
|
q=q_len, |
|
) |
|
|
|
query_states = qkv_states[..., : self.num_key_value_groups, :] |
|
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d") |
|
key_states = qkv_states[..., -2, :] |
|
value_states = qkv_states[..., -1, :] |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
dropout_rate = 0.0 if not self.training else self.attention_dropout |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
|
|
if hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back " |
|
f"the input in {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
attn_output = self.wo(attn_output, im_mask) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class InternLM2DecoderLayer(nn.Module): |
|
def __init__(self, config: InternLM2Config): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.attention = ( |
|
InternLM2Attention(config=config) |
|
if not getattr(config, "_flash_attn_2_enabled", False) |
|
else InternLM2FlashAttention2(config=config) |
|
) |
|
self.feed_forward = InternLM2MLP(config) |
|
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
im_mask: Optional[Tuple[torch.Tensor]] = None, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): |
|
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, |
|
query_sequence_length, key_sequence_length)` if default attention is used. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. " |
|
"Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.attention_norm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.attention( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
im_mask=im_mask, |
|
**kwargs, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.ffn_norm(hidden_states) |
|
hidden_states = self.feed_forward(hidden_states, im_mask) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
InternLM2_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`InternLM2Config`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.", |
|
InternLM2_START_DOCSTRING, |
|
) |
|
class InternLM2PreTrainedModel(PreTrainedModel): |
|
config_class = InternLM2Config |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["InternLM2DecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
InternLM2_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or |
|
when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.", |
|
InternLM2_START_DOCSTRING, |
|
) |
|
class InternLM2Model(InternLM2PreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`] |
|
|
|
Args: |
|
config: InternLM2Config |
|
""" |
|
|
|
_auto_class = "AutoModel" |
|
|
|
def __init__(self, config: InternLM2Config): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.tok_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.tok_embeddings = value |
|
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): |
|
|
|
|
|
combined_attention_mask = None |
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( |
|
inputs_embeds.device |
|
) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
|
im_mask = kwargs.get('im_mask', None) |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape[:2] |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length = inputs_embeds.shape[:2] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.tok_embeddings(input_ids) |
|
im_mask = torch.zeros(inputs_embeds.shape[:2]).to(inputs_embeds.device).bool() |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, None, im_mask) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
None, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
im_mask=im_mask, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class InternLM2ForCausalLM(InternLM2PreTrainedModel): |
|
_auto_class = "AutoModelForCausalLM" |
|
|
|
_tied_weights_keys = ["output.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = InternLM2Model(config) |
|
self.vocab_size = config.vocab_size |
|
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.debug_flag = 1 |
|
self.tokenizer = None |
|
|
|
self.max_length = config.max_length |
|
print (f'Set max length to {self.max_length}') |
|
self.debug_flag = 1 |
|
|
|
self.post_init() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, InternLM2Model): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
|
|
def get_input_embeddings(self): |
|
return self.model.tok_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.tok_embeddings = value |
|
|
|
def get_output_embeddings(self): |
|
return self.output |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.output = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
def encode_text(self, t, add_special_tokens=False): |
|
t = t.replace('<|User|>:', '[UNUSED_TOKEN_146]user\n') |
|
t = t.replace('<|Bot|>:', '[UNUSED_TOKEN_146]assistant\n') |
|
t = t.replace('<TOKENS_UNUSED_0>', '[UNUSED_TOKEN_145]') |
|
t = t.replace('<TOKENS_UNUSED_1>', '[UNUSED_TOKEN_145]') |
|
t = t.replace('[UNUSED_TOKEN_0]', '[UNUSED_TOKEN_145]') |
|
t = t.replace('[UNUSED_TOKEN_1]', '[UNUSED_TOKEN_145]') |
|
|
|
text = t |
|
token = self.tokenizer(text, |
|
return_tensors='pt', |
|
add_special_tokens=add_special_tokens).input_ids.to(self.device) |
|
embs = self.model.tok_embeddings(token) |
|
return embs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def prompt_wrap(self, img_embeds, prompt): |
|
batch_size = img_embeds.shape[0] |
|
p_before, p_after = prompt.split('<ImageHere>') |
|
p_before_tokens = self.tokenizer( |
|
p_before, return_tensors="pt", add_special_tokens=True).to(img_embeds.device) |
|
|
|
p_before_embeds = self.model.tok_embeddings(p_before_tokens.input_ids).expand(batch_size, -1, -1) |
|
wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1) |
|
|
|
wrapped_atts_img = torch.ones(wrapped_img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device) |
|
|
|
wrapped_target = torch.ones(batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to(img_embeds.device) * -100 |
|
|
|
|
|
return wrapped_img_embeds, wrapped_atts_img, wrapped_target |
|
|
|
def text2emb(self, text, add_special=False): |
|
|
|
new_text = [] |
|
for t in text: |
|
t = t.replace('<|User|>:', '[UNUSED_TOKEN_146]user\n') |
|
t = t.replace('<|Bot|>:', '[UNUSED_TOKEN_146]assistant\n') |
|
t = t.replace('<TOKENS_UNUSED_0>', '[UNUSED_TOKEN_145]') |
|
t = t.replace('<TOKENS_UNUSED_1>', '[UNUSED_TOKEN_145]') |
|
new_text.append(t) |
|
text = new_text |
|
to_regress_tokens = self.tokenizer( |
|
text, |
|
return_tensors="pt", |
|
padding="longest", |
|
truncation=True, |
|
max_length=self.max_length, |
|
add_special_tokens=add_special |
|
).to(self.device) |
|
|
|
|
|
|
|
targets = to_regress_tokens.input_ids.masked_fill( |
|
to_regress_tokens.input_ids == self.tokenizer.pad_token_id, -100 |
|
).to(self.device) |
|
|
|
|
|
return to_regress_tokens, targets |
|
|
|
def mask_human_targets(self, input_ids, pure=False): |
|
target_batch = [] |
|
for bs in range(input_ids.shape[0]): |
|
cur_idx = 0 |
|
ids = input_ids[bs] |
|
targets = copy.deepcopy(ids) |
|
end_count = 0 |
|
last_eoa = 0 |
|
for i, temp_id in enumerate(ids): |
|
if temp_id == 92542: |
|
if end_count % 2 == 0: |
|
targets[last_eoa: i+6] = -100 |
|
else: |
|
last_eoa = i + 1 |
|
end_count += 1 |
|
elif temp_id == 2: |
|
targets[i+1:] = -100 |
|
break |
|
if temp_id != 2 and end_count % 2 == 0: |
|
targets[last_eoa+1:] = -100 |
|
|
|
target_batch.append(targets.unsqueeze(0)) |
|
if self.debug_flag and 0: |
|
print ('#### Warining! System meta is not support now') |
|
targets_vis = targets.clone() |
|
targets_vis[targets_vis==-100] = 92399 |
|
targets_vis_tokens = ''.join(self.tokenizer.convert_ids_to_tokens(targets_vis)).replace('[UNUSED_TOKEN_2]', " ") |
|
print(''.join(self.tokenizer.convert_ids_to_tokens(ids))) |
|
print('-----------') |
|
print([targets_vis_tokens]) |
|
print('-----------------------------') |
|
|
|
target_batch = torch.cat(target_batch, dim=0) |
|
return target_batch |
|
|
|
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM |
|
|
|
>>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
samples = kwargs.get('samples', None) |
|
if samples: |
|
if self.debug_flag: |
|
self.debug_flag += 1 |
|
if self.debug_flag > 5: |
|
self.debug_flag = 0 |
|
|
|
has_img = 'image' in samples.keys() |
|
|
|
|
|
|
|
|
|
text = samples['text_input'] |
|
text = ['<|User|>:' + t for t in text] |
|
to_regress_tokens, targets = self.text2emb(text, add_special = True) |
|
|
|
to_regress_embeds = self.model.tok_embeddings(to_regress_tokens.input_ids) |
|
attention_mask = to_regress_tokens.attention_mask |
|
|
|
if has_img: |
|
|
|
image = samples["image"][0] |
|
bs = to_regress_embeds.shape[0] |
|
assert image.shape[0] == bs |
|
|
|
if samples['data_type'][0] != 'nlp': |
|
img_embeds, atts_img, img_target = self.img2emb(image) |
|
to_regress_embeds = torch.cat([to_regress_embeds[:,:1], img_embeds, to_regress_embeds[:,1:]], dim=1) |
|
attention_mask = torch.cat([attention_mask[:,:1], atts_img, attention_mask[:,1:]], dim=1) |
|
targets = torch.cat([targets[:,:1], img_target, targets[:,1:]], dim=1) |
|
|
|
im_len = img_embeds.shape[1] |
|
im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda() |
|
im_mask[:,1:1+im_len] = 1 |
|
temp_max_length = self.max_length |
|
|
|
else: |
|
img_embeds, atts_img, img_target = self.img2emb(torch.zeros(1,3,self.im_size,self.im_size).to(image.device).to(image.dtype)) |
|
to_regress_embeds += img_embeds.sum() * 0 |
|
im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda() |
|
temp_max_length = self.max_length |
|
|
|
temp_max_length = self.max_length |
|
inputs_embeds = to_regress_embeds[:, :temp_max_length] |
|
attention_mask = attention_mask[:, :temp_max_length] |
|
targets = targets[:, :temp_max_length] |
|
|
|
labels = targets |
|
if self.debug_flag: |
|
print (targets.shape, inputs_embeds.shape, attention_mask.shape) |
|
le = len(samples['text_input']) |
|
data_type = samples['data_type'][0] |
|
print (f'DataType: {data_type}. Has Image: {has_img}. Current max length: {self.max_length}, BatchSize is {le}') |
|
if has_img: |
|
print (img_embeds.shape) |
|
|
|
else: |
|
self.debug_flag = 0 |
|
im_mask = kwargs.get('im_mask', None) |
|
if im_mask is None and inputs_embeds is not None: |
|
im_mask = torch.zeros(inputs_embeds.shape[:2]).to(inputs_embeds.device) |
|
im_mask[:,1:1+256] = 1 |
|
im_mask = im_mask.bool() |
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.output(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss(reduce=False) |
|
B, N = shift_logits.shape[:2] |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
mask = shift_labels >= 0 |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
loss = (loss.view(B,N).sum(dim=1) / mask.view(B,N).sum(dim=1)).mean() |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, im_mask=None, **kwargs |
|
): |
|
if past_key_values is not None: |
|
past_length = past_key_values[0][0].shape[2] |
|
|
|
|
|
if input_ids.shape[1] > past_length: |
|
remove_prefix_length = past_length |
|
else: |
|
|
|
remove_prefix_length = input_ids.shape[1] - 1 |
|
|
|
input_ids = input_ids[:, remove_prefix_length:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
im_mask = im_mask |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"im_mask": im_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|
|
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=""): |
|
prompt = "" |
|
if meta_instruction: |
|
prompt += f"""<s>[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n""" |
|
else: |
|
prompt += "<s>" |
|
for record in history: |
|
prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n""" |
|
prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n""" |
|
return tokenizer([prompt], return_tensors="pt") |
|
|
|
def inference(self, question, tokenizer): |
|
print(question) |
|
question = f'[UNUSED_TOKEN_146]user\n{question}[UNUSED_TOKEN_145]\n' |
|
stop_words_ids = [ |
|
torch.tensor([2]).cuda(), |
|
torch.tensor([92542]).cuda(), |
|
] |
|
stopping_criteria = StoppingCriteriaList( |
|
[StoppingCriteriaSub(stops=stop_words_ids)]) |
|
result = [] |
|
for i in range(3): |
|
print(f'------attempt {i}------') |
|
d = f"{question}" |
|
input_ids = tokenizer(d, return_tensors="pt")["input_ids"] |
|
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["[UNUSED_TOKEN_145]"])[0]] |
|
with torch.no_grad(): |
|
generate = self.generate(input_ids.cuda(), |
|
do_sample=True, |
|
temperature=1.0, |
|
repetition_penalty=1.005, |
|
max_new_tokens=1000, |
|
top_p=0.8, |
|
top_k=50, |
|
eos_token_id=eos_token_id, |
|
stopping_criteria=stopping_criteria,) |
|
response = tokenizer.decode(generate[0].tolist(), skip_special_tokens=True) |
|
response.split('[UNUSED_TOKEN_146]assistant')[1] |
|
print(response[len('[UNUSED_TOKEN_146]assistant\n'):-len('[UNUSED_TOKEN_145]\n')]) |
|
|
|
|