|
|
|
|
|
|
|
import math |
|
import os |
|
import torch |
|
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextConfig |
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
StableDiffusionPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from safetensors.torch import load_file, save_file |
|
|
|
|
|
NUM_TRAIN_TIMESTEPS = 1000 |
|
BETA_START = 0.00085 |
|
BETA_END = 0.0120 |
|
|
|
UNET_PARAMS_MODEL_CHANNELS = 320 |
|
UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4] |
|
UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1] |
|
UNET_PARAMS_IMAGE_SIZE = 32 |
|
UNET_PARAMS_IN_CHANNELS = 4 |
|
UNET_PARAMS_OUT_CHANNELS = 4 |
|
UNET_PARAMS_NUM_RES_BLOCKS = 2 |
|
UNET_PARAMS_CONTEXT_DIM = 768 |
|
UNET_PARAMS_NUM_HEADS = 8 |
|
|
|
VAE_PARAMS_Z_CHANNELS = 4 |
|
VAE_PARAMS_RESOLUTION = 256 |
|
VAE_PARAMS_IN_CHANNELS = 3 |
|
VAE_PARAMS_OUT_CH = 3 |
|
VAE_PARAMS_CH = 128 |
|
VAE_PARAMS_CH_MULT = [1, 2, 4, 4] |
|
VAE_PARAMS_NUM_RES_BLOCKS = 2 |
|
|
|
|
|
V2_UNET_PARAMS_ATTENTION_HEAD_DIM = [5, 10, 20, 20] |
|
V2_UNET_PARAMS_CONTEXT_DIM = 1024 |
|
|
|
|
|
DIFFUSERS_REF_MODEL_ID_V1 = 'runwayml/stable-diffusion-v1-5' |
|
DIFFUSERS_REF_MODEL_ID_V2 = 'stabilityai/stable-diffusion-2-1' |
|
|
|
|
|
|
|
|
|
|
|
|
|
def shave_segments(path, n_shave_prefix_segments=1): |
|
""" |
|
Removes segments. Positive values shave the first segments, negative shave the last segments. |
|
""" |
|
if n_shave_prefix_segments >= 0: |
|
return '.'.join(path.split('.')[n_shave_prefix_segments:]) |
|
else: |
|
return '.'.join(path.split('.')[:n_shave_prefix_segments]) |
|
|
|
|
|
def renew_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item.replace('in_layers.0', 'norm1') |
|
new_item = new_item.replace('in_layers.2', 'conv1') |
|
|
|
new_item = new_item.replace('out_layers.0', 'norm2') |
|
new_item = new_item.replace('out_layers.3', 'conv2') |
|
|
|
new_item = new_item.replace('emb_layers.1', 'time_emb_proj') |
|
new_item = new_item.replace('skip_connection', 'conv_shortcut') |
|
|
|
new_item = shave_segments( |
|
new_item, n_shave_prefix_segments=n_shave_prefix_segments |
|
) |
|
|
|
mapping.append({'old': old_item, 'new': new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace('nin_shortcut', 'conv_shortcut') |
|
new_item = shave_segments( |
|
new_item, n_shave_prefix_segments=n_shave_prefix_segments |
|
) |
|
|
|
mapping.append({'old': old_item, 'new': new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_attention_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside attentions to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mapping.append({'old': old_item, 'new': new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside attentions to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace('norm.weight', 'group_norm.weight') |
|
new_item = new_item.replace('norm.bias', 'group_norm.bias') |
|
|
|
new_item = new_item.replace('q.weight', 'query.weight') |
|
new_item = new_item.replace('q.bias', 'query.bias') |
|
|
|
new_item = new_item.replace('k.weight', 'key.weight') |
|
new_item = new_item.replace('k.bias', 'key.bias') |
|
|
|
new_item = new_item.replace('v.weight', 'value.weight') |
|
new_item = new_item.replace('v.bias', 'value.bias') |
|
|
|
new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') |
|
new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') |
|
|
|
new_item = shave_segments( |
|
new_item, n_shave_prefix_segments=n_shave_prefix_segments |
|
) |
|
|
|
mapping.append({'old': old_item, 'new': new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def assign_to_checkpoint( |
|
paths, |
|
checkpoint, |
|
old_checkpoint, |
|
attention_paths_to_split=None, |
|
additional_replacements=None, |
|
config=None, |
|
): |
|
""" |
|
This does the final conversion step: take locally converted weights and apply a global renaming |
|
to them. It splits attention layers, and takes into account additional replacements |
|
that may arise. |
|
Assigns the weights to the new checkpoint. |
|
""" |
|
assert isinstance( |
|
paths, list |
|
), "Paths should be a list of dicts containing 'old' and 'new' keys." |
|
|
|
|
|
if attention_paths_to_split is not None: |
|
for path, path_map in attention_paths_to_split.items(): |
|
old_tensor = old_checkpoint[path] |
|
channels = old_tensor.shape[0] // 3 |
|
|
|
target_shape = ( |
|
(-1, channels) if len(old_tensor.shape) == 3 else (-1) |
|
) |
|
|
|
num_heads = old_tensor.shape[0] // config['num_head_channels'] // 3 |
|
|
|
old_tensor = old_tensor.reshape( |
|
(num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] |
|
) |
|
query, key, value = old_tensor.split(channels // num_heads, dim=1) |
|
|
|
checkpoint[path_map['query']] = query.reshape(target_shape) |
|
checkpoint[path_map['key']] = key.reshape(target_shape) |
|
checkpoint[path_map['value']] = value.reshape(target_shape) |
|
|
|
for path in paths: |
|
new_path = path['new'] |
|
|
|
|
|
if ( |
|
attention_paths_to_split is not None |
|
and new_path in attention_paths_to_split |
|
): |
|
continue |
|
|
|
|
|
new_path = new_path.replace('middle_block.0', 'mid_block.resnets.0') |
|
new_path = new_path.replace('middle_block.1', 'mid_block.attentions.0') |
|
new_path = new_path.replace('middle_block.2', 'mid_block.resnets.1') |
|
|
|
if additional_replacements is not None: |
|
for replacement in additional_replacements: |
|
new_path = new_path.replace( |
|
replacement['old'], replacement['new'] |
|
) |
|
|
|
|
|
if 'proj_attn.weight' in new_path: |
|
checkpoint[new_path] = old_checkpoint[path['old']][:, :, 0] |
|
else: |
|
checkpoint[new_path] = old_checkpoint[path['old']] |
|
|
|
|
|
def conv_attn_to_linear(checkpoint): |
|
keys = list(checkpoint.keys()) |
|
attn_keys = ['query.weight', 'key.weight', 'value.weight'] |
|
for key in keys: |
|
if '.'.join(key.split('.')[-2:]) in attn_keys: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0, 0] |
|
elif 'proj_attn.weight' in key: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0] |
|
|
|
|
|
def linear_transformer_to_conv(checkpoint): |
|
keys = list(checkpoint.keys()) |
|
tf_keys = ['proj_in.weight', 'proj_out.weight'] |
|
for key in keys: |
|
if '.'.join(key.split('.')[-2:]) in tf_keys: |
|
if checkpoint[key].ndim == 2: |
|
checkpoint[key] = checkpoint[key].unsqueeze(2).unsqueeze(2) |
|
|
|
|
|
def convert_ldm_unet_checkpoint(v2, checkpoint, config): |
|
""" |
|
Takes a state dict and a config, and returns a converted checkpoint. |
|
""" |
|
|
|
|
|
unet_state_dict = {} |
|
unet_key = 'model.diffusion_model.' |
|
keys = list(checkpoint.keys()) |
|
for key in keys: |
|
if key.startswith(unet_key): |
|
unet_state_dict[key.replace(unet_key, '')] = checkpoint.pop(key) |
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint['time_embedding.linear_1.weight'] = unet_state_dict[ |
|
'time_embed.0.weight' |
|
] |
|
new_checkpoint['time_embedding.linear_1.bias'] = unet_state_dict[ |
|
'time_embed.0.bias' |
|
] |
|
new_checkpoint['time_embedding.linear_2.weight'] = unet_state_dict[ |
|
'time_embed.2.weight' |
|
] |
|
new_checkpoint['time_embedding.linear_2.bias'] = unet_state_dict[ |
|
'time_embed.2.bias' |
|
] |
|
|
|
new_checkpoint['conv_in.weight'] = unet_state_dict[ |
|
'input_blocks.0.0.weight' |
|
] |
|
new_checkpoint['conv_in.bias'] = unet_state_dict['input_blocks.0.0.bias'] |
|
|
|
new_checkpoint['conv_norm_out.weight'] = unet_state_dict['out.0.weight'] |
|
new_checkpoint['conv_norm_out.bias'] = unet_state_dict['out.0.bias'] |
|
new_checkpoint['conv_out.weight'] = unet_state_dict['out.2.weight'] |
|
new_checkpoint['conv_out.bias'] = unet_state_dict['out.2.bias'] |
|
|
|
|
|
num_input_blocks = len( |
|
{ |
|
'.'.join(layer.split('.')[:2]) |
|
for layer in unet_state_dict |
|
if 'input_blocks' in layer |
|
} |
|
) |
|
input_blocks = { |
|
layer_id: [ |
|
key |
|
for key in unet_state_dict |
|
if f'input_blocks.{layer_id}.' in key |
|
] |
|
for layer_id in range(num_input_blocks) |
|
} |
|
|
|
|
|
num_middle_blocks = len( |
|
{ |
|
'.'.join(layer.split('.')[:2]) |
|
for layer in unet_state_dict |
|
if 'middle_block' in layer |
|
} |
|
) |
|
middle_blocks = { |
|
layer_id: [ |
|
key |
|
for key in unet_state_dict |
|
if f'middle_block.{layer_id}.' in key |
|
] |
|
for layer_id in range(num_middle_blocks) |
|
} |
|
|
|
|
|
num_output_blocks = len( |
|
{ |
|
'.'.join(layer.split('.')[:2]) |
|
for layer in unet_state_dict |
|
if 'output_blocks' in layer |
|
} |
|
) |
|
output_blocks = { |
|
layer_id: [ |
|
key |
|
for key in unet_state_dict |
|
if f'output_blocks.{layer_id}.' in key |
|
] |
|
for layer_id in range(num_output_blocks) |
|
} |
|
|
|
for i in range(1, num_input_blocks): |
|
block_id = (i - 1) // (config['layers_per_block'] + 1) |
|
layer_in_block_id = (i - 1) % (config['layers_per_block'] + 1) |
|
|
|
resnets = [ |
|
key |
|
for key in input_blocks[i] |
|
if f'input_blocks.{i}.0' in key |
|
and f'input_blocks.{i}.0.op' not in key |
|
] |
|
attentions = [ |
|
key for key in input_blocks[i] if f'input_blocks.{i}.1' in key |
|
] |
|
|
|
if f'input_blocks.{i}.0.op.weight' in unet_state_dict: |
|
new_checkpoint[ |
|
f'down_blocks.{block_id}.downsamplers.0.conv.weight' |
|
] = unet_state_dict.pop(f'input_blocks.{i}.0.op.weight') |
|
new_checkpoint[ |
|
f'down_blocks.{block_id}.downsamplers.0.conv.bias' |
|
] = unet_state_dict.pop(f'input_blocks.{i}.0.op.bias') |
|
|
|
paths = renew_resnet_paths(resnets) |
|
meta_path = { |
|
'old': f'input_blocks.{i}.0', |
|
'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}', |
|
} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
unet_state_dict, |
|
additional_replacements=[meta_path], |
|
config=config, |
|
) |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = { |
|
'old': f'input_blocks.{i}.1', |
|
'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}', |
|
} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
unet_state_dict, |
|
additional_replacements=[meta_path], |
|
config=config, |
|
) |
|
|
|
resnet_0 = middle_blocks[0] |
|
attentions = middle_blocks[1] |
|
resnet_1 = middle_blocks[2] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnet_0) |
|
assign_to_checkpoint( |
|
resnet_0_paths, new_checkpoint, unet_state_dict, config=config |
|
) |
|
|
|
resnet_1_paths = renew_resnet_paths(resnet_1) |
|
assign_to_checkpoint( |
|
resnet_1_paths, new_checkpoint, unet_state_dict, config=config |
|
) |
|
|
|
attentions_paths = renew_attention_paths(attentions) |
|
meta_path = {'old': 'middle_block.1', 'new': 'mid_block.attentions.0'} |
|
assign_to_checkpoint( |
|
attentions_paths, |
|
new_checkpoint, |
|
unet_state_dict, |
|
additional_replacements=[meta_path], |
|
config=config, |
|
) |
|
|
|
for i in range(num_output_blocks): |
|
block_id = i // (config['layers_per_block'] + 1) |
|
layer_in_block_id = i % (config['layers_per_block'] + 1) |
|
output_block_layers = [ |
|
shave_segments(name, 2) for name in output_blocks[i] |
|
] |
|
output_block_list = {} |
|
|
|
for layer in output_block_layers: |
|
layer_id, layer_name = layer.split('.')[0], shave_segments( |
|
layer, 1 |
|
) |
|
if layer_id in output_block_list: |
|
output_block_list[layer_id].append(layer_name) |
|
else: |
|
output_block_list[layer_id] = [layer_name] |
|
|
|
if len(output_block_list) > 1: |
|
resnets = [ |
|
key |
|
for key in output_blocks[i] |
|
if f'output_blocks.{i}.0' in key |
|
] |
|
attentions = [ |
|
key |
|
for key in output_blocks[i] |
|
if f'output_blocks.{i}.1' in key |
|
] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnets) |
|
paths = renew_resnet_paths(resnets) |
|
|
|
meta_path = { |
|
'old': f'output_blocks.{i}.0', |
|
'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}', |
|
} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
unet_state_dict, |
|
additional_replacements=[meta_path], |
|
config=config, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
for l in output_block_list.values(): |
|
l.sort() |
|
|
|
if ['conv.bias', 'conv.weight'] in output_block_list.values(): |
|
index = list(output_block_list.values()).index( |
|
['conv.bias', 'conv.weight'] |
|
) |
|
new_checkpoint[ |
|
f'up_blocks.{block_id}.upsamplers.0.conv.bias' |
|
] = unet_state_dict[f'output_blocks.{i}.{index}.conv.bias'] |
|
new_checkpoint[ |
|
f'up_blocks.{block_id}.upsamplers.0.conv.weight' |
|
] = unet_state_dict[f'output_blocks.{i}.{index}.conv.weight'] |
|
|
|
|
|
if len(attentions) == 2: |
|
attentions = [] |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = { |
|
'old': f'output_blocks.{i}.1', |
|
'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}', |
|
} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
unet_state_dict, |
|
additional_replacements=[meta_path], |
|
config=config, |
|
) |
|
else: |
|
resnet_0_paths = renew_resnet_paths( |
|
output_block_layers, n_shave_prefix_segments=1 |
|
) |
|
for path in resnet_0_paths: |
|
old_path = '.'.join(['output_blocks', str(i), path['old']]) |
|
new_path = '.'.join( |
|
[ |
|
'up_blocks', |
|
str(block_id), |
|
'resnets', |
|
str(layer_in_block_id), |
|
path['new'], |
|
] |
|
) |
|
|
|
new_checkpoint[new_path] = unet_state_dict[old_path] |
|
|
|
|
|
if v2: |
|
linear_transformer_to_conv(new_checkpoint) |
|
|
|
return new_checkpoint |
|
|
|
|
|
def convert_ldm_vae_checkpoint(checkpoint, config): |
|
|
|
vae_state_dict = {} |
|
vae_key = 'first_stage_model.' |
|
keys = list(checkpoint.keys()) |
|
for key in keys: |
|
if key.startswith(vae_key): |
|
vae_state_dict[key.replace(vae_key, '')] = checkpoint.get(key) |
|
|
|
|
|
|
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint['encoder.conv_in.weight'] = vae_state_dict[ |
|
'encoder.conv_in.weight' |
|
] |
|
new_checkpoint['encoder.conv_in.bias'] = vae_state_dict[ |
|
'encoder.conv_in.bias' |
|
] |
|
new_checkpoint['encoder.conv_out.weight'] = vae_state_dict[ |
|
'encoder.conv_out.weight' |
|
] |
|
new_checkpoint['encoder.conv_out.bias'] = vae_state_dict[ |
|
'encoder.conv_out.bias' |
|
] |
|
new_checkpoint['encoder.conv_norm_out.weight'] = vae_state_dict[ |
|
'encoder.norm_out.weight' |
|
] |
|
new_checkpoint['encoder.conv_norm_out.bias'] = vae_state_dict[ |
|
'encoder.norm_out.bias' |
|
] |
|
|
|
new_checkpoint['decoder.conv_in.weight'] = vae_state_dict[ |
|
'decoder.conv_in.weight' |
|
] |
|
new_checkpoint['decoder.conv_in.bias'] = vae_state_dict[ |
|
'decoder.conv_in.bias' |
|
] |
|
new_checkpoint['decoder.conv_out.weight'] = vae_state_dict[ |
|
'decoder.conv_out.weight' |
|
] |
|
new_checkpoint['decoder.conv_out.bias'] = vae_state_dict[ |
|
'decoder.conv_out.bias' |
|
] |
|
new_checkpoint['decoder.conv_norm_out.weight'] = vae_state_dict[ |
|
'decoder.norm_out.weight' |
|
] |
|
new_checkpoint['decoder.conv_norm_out.bias'] = vae_state_dict[ |
|
'decoder.norm_out.bias' |
|
] |
|
|
|
new_checkpoint['quant_conv.weight'] = vae_state_dict['quant_conv.weight'] |
|
new_checkpoint['quant_conv.bias'] = vae_state_dict['quant_conv.bias'] |
|
new_checkpoint['post_quant_conv.weight'] = vae_state_dict[ |
|
'post_quant_conv.weight' |
|
] |
|
new_checkpoint['post_quant_conv.bias'] = vae_state_dict[ |
|
'post_quant_conv.bias' |
|
] |
|
|
|
|
|
num_down_blocks = len( |
|
{ |
|
'.'.join(layer.split('.')[:3]) |
|
for layer in vae_state_dict |
|
if 'encoder.down' in layer |
|
} |
|
) |
|
down_blocks = { |
|
layer_id: [key for key in vae_state_dict if f'down.{layer_id}' in key] |
|
for layer_id in range(num_down_blocks) |
|
} |
|
|
|
|
|
num_up_blocks = len( |
|
{ |
|
'.'.join(layer.split('.')[:3]) |
|
for layer in vae_state_dict |
|
if 'decoder.up' in layer |
|
} |
|
) |
|
up_blocks = { |
|
layer_id: [key for key in vae_state_dict if f'up.{layer_id}' in key] |
|
for layer_id in range(num_up_blocks) |
|
} |
|
|
|
for i in range(num_down_blocks): |
|
resnets = [ |
|
key |
|
for key in down_blocks[i] |
|
if f'down.{i}' in key and f'down.{i}.downsample' not in key |
|
] |
|
|
|
if f'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: |
|
new_checkpoint[ |
|
f'encoder.down_blocks.{i}.downsamplers.0.conv.weight' |
|
] = vae_state_dict.pop(f'encoder.down.{i}.downsample.conv.weight') |
|
new_checkpoint[ |
|
f'encoder.down_blocks.{i}.downsamplers.0.conv.bias' |
|
] = vae_state_dict.pop(f'encoder.down.{i}.downsample.conv.bias') |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = { |
|
'old': f'down.{i}.block', |
|
'new': f'down_blocks.{i}.resnets', |
|
} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
vae_state_dict, |
|
additional_replacements=[meta_path], |
|
config=config, |
|
) |
|
|
|
mid_resnets = [key for key in vae_state_dict if 'encoder.mid.block' in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [ |
|
key for key in mid_resnets if f'encoder.mid.block_{i}' in key |
|
] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = { |
|
'old': f'mid.block_{i}', |
|
'new': f'mid_block.resnets.{i - 1}', |
|
} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
vae_state_dict, |
|
additional_replacements=[meta_path], |
|
config=config, |
|
) |
|
|
|
mid_attentions = [ |
|
key for key in vae_state_dict if 'encoder.mid.attn' in key |
|
] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
vae_state_dict, |
|
additional_replacements=[meta_path], |
|
config=config, |
|
) |
|
conv_attn_to_linear(new_checkpoint) |
|
|
|
for i in range(num_up_blocks): |
|
block_id = num_up_blocks - 1 - i |
|
resnets = [ |
|
key |
|
for key in up_blocks[block_id] |
|
if f'up.{block_id}' in key and f'up.{block_id}.upsample' not in key |
|
] |
|
|
|
if f'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: |
|
new_checkpoint[ |
|
f'decoder.up_blocks.{i}.upsamplers.0.conv.weight' |
|
] = vae_state_dict[f'decoder.up.{block_id}.upsample.conv.weight'] |
|
new_checkpoint[ |
|
f'decoder.up_blocks.{i}.upsamplers.0.conv.bias' |
|
] = vae_state_dict[f'decoder.up.{block_id}.upsample.conv.bias'] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = { |
|
'old': f'up.{block_id}.block', |
|
'new': f'up_blocks.{i}.resnets', |
|
} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
vae_state_dict, |
|
additional_replacements=[meta_path], |
|
config=config, |
|
) |
|
|
|
mid_resnets = [key for key in vae_state_dict if 'decoder.mid.block' in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [ |
|
key for key in mid_resnets if f'decoder.mid.block_{i}' in key |
|
] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = { |
|
'old': f'mid.block_{i}', |
|
'new': f'mid_block.resnets.{i - 1}', |
|
} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
vae_state_dict, |
|
additional_replacements=[meta_path], |
|
config=config, |
|
) |
|
|
|
mid_attentions = [ |
|
key for key in vae_state_dict if 'decoder.mid.attn' in key |
|
] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
vae_state_dict, |
|
additional_replacements=[meta_path], |
|
config=config, |
|
) |
|
conv_attn_to_linear(new_checkpoint) |
|
return new_checkpoint |
|
|
|
|
|
def create_unet_diffusers_config(v2): |
|
""" |
|
Creates a config for the diffusers based on the config of the LDM model. |
|
""" |
|
|
|
|
|
block_out_channels = [ |
|
UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT |
|
] |
|
|
|
down_block_types = [] |
|
resolution = 1 |
|
for i in range(len(block_out_channels)): |
|
block_type = ( |
|
'CrossAttnDownBlock2D' |
|
if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS |
|
else 'DownBlock2D' |
|
) |
|
down_block_types.append(block_type) |
|
if i != len(block_out_channels) - 1: |
|
resolution *= 2 |
|
|
|
up_block_types = [] |
|
for i in range(len(block_out_channels)): |
|
block_type = ( |
|
'CrossAttnUpBlock2D' |
|
if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS |
|
else 'UpBlock2D' |
|
) |
|
up_block_types.append(block_type) |
|
resolution //= 2 |
|
|
|
config = dict( |
|
sample_size=UNET_PARAMS_IMAGE_SIZE, |
|
in_channels=UNET_PARAMS_IN_CHANNELS, |
|
out_channels=UNET_PARAMS_OUT_CHANNELS, |
|
down_block_types=tuple(down_block_types), |
|
up_block_types=tuple(up_block_types), |
|
block_out_channels=tuple(block_out_channels), |
|
layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS, |
|
cross_attention_dim=UNET_PARAMS_CONTEXT_DIM |
|
if not v2 |
|
else V2_UNET_PARAMS_CONTEXT_DIM, |
|
attention_head_dim=UNET_PARAMS_NUM_HEADS |
|
if not v2 |
|
else V2_UNET_PARAMS_ATTENTION_HEAD_DIM, |
|
) |
|
|
|
return config |
|
|
|
|
|
def create_vae_diffusers_config(): |
|
""" |
|
Creates a config for the diffusers based on the config of the LDM model. |
|
""" |
|
|
|
|
|
block_out_channels = [VAE_PARAMS_CH * mult for mult in VAE_PARAMS_CH_MULT] |
|
down_block_types = ['DownEncoderBlock2D'] * len(block_out_channels) |
|
up_block_types = ['UpDecoderBlock2D'] * len(block_out_channels) |
|
|
|
config = dict( |
|
sample_size=VAE_PARAMS_RESOLUTION, |
|
in_channels=VAE_PARAMS_IN_CHANNELS, |
|
out_channels=VAE_PARAMS_OUT_CH, |
|
down_block_types=tuple(down_block_types), |
|
up_block_types=tuple(up_block_types), |
|
block_out_channels=tuple(block_out_channels), |
|
latent_channels=VAE_PARAMS_Z_CHANNELS, |
|
layers_per_block=VAE_PARAMS_NUM_RES_BLOCKS, |
|
) |
|
return config |
|
|
|
|
|
def convert_ldm_clip_checkpoint_v1(checkpoint): |
|
keys = list(checkpoint.keys()) |
|
text_model_dict = {} |
|
for key in keys: |
|
if key.startswith('cond_stage_model.transformer'): |
|
text_model_dict[ |
|
key[len('cond_stage_model.transformer.') :] |
|
] = checkpoint[key] |
|
return text_model_dict |
|
|
|
|
|
def convert_ldm_clip_checkpoint_v2(checkpoint, max_length): |
|
|
|
def convert_key(key): |
|
if not key.startswith('cond_stage_model'): |
|
return None |
|
|
|
|
|
key = key.replace( |
|
'cond_stage_model.model.transformer.', 'text_model.encoder.' |
|
) |
|
key = key.replace('cond_stage_model.model.', 'text_model.') |
|
|
|
if 'resblocks' in key: |
|
|
|
key = key.replace('.resblocks.', '.layers.') |
|
if '.ln_' in key: |
|
key = key.replace('.ln_', '.layer_norm') |
|
elif '.mlp.' in key: |
|
key = key.replace('.c_fc.', '.fc1.') |
|
key = key.replace('.c_proj.', '.fc2.') |
|
elif '.attn.out_proj' in key: |
|
key = key.replace('.attn.out_proj.', '.self_attn.out_proj.') |
|
elif '.attn.in_proj' in key: |
|
key = None |
|
else: |
|
raise ValueError(f'unexpected key in SD: {key}') |
|
elif '.positional_embedding' in key: |
|
key = key.replace( |
|
'.positional_embedding', |
|
'.embeddings.position_embedding.weight', |
|
) |
|
elif '.text_projection' in key: |
|
key = None |
|
elif '.logit_scale' in key: |
|
key = None |
|
elif '.token_embedding' in key: |
|
key = key.replace( |
|
'.token_embedding.weight', '.embeddings.token_embedding.weight' |
|
) |
|
elif '.ln_final' in key: |
|
key = key.replace('.ln_final', '.final_layer_norm') |
|
return key |
|
|
|
keys = list(checkpoint.keys()) |
|
new_sd = {} |
|
for key in keys: |
|
|
|
if '.resblocks.23.' in key: |
|
continue |
|
new_key = convert_key(key) |
|
if new_key is None: |
|
continue |
|
new_sd[new_key] = checkpoint[key] |
|
|
|
|
|
for key in keys: |
|
if '.resblocks.23.' in key: |
|
continue |
|
if '.resblocks' in key and '.attn.in_proj_' in key: |
|
|
|
values = torch.chunk(checkpoint[key], 3) |
|
|
|
key_suffix = '.weight' if 'weight' in key else '.bias' |
|
key_pfx = key.replace( |
|
'cond_stage_model.model.transformer.resblocks.', |
|
'text_model.encoder.layers.', |
|
) |
|
key_pfx = key_pfx.replace('_weight', '') |
|
key_pfx = key_pfx.replace('_bias', '') |
|
key_pfx = key_pfx.replace('.attn.in_proj', '.self_attn.') |
|
new_sd[key_pfx + 'q_proj' + key_suffix] = values[0] |
|
new_sd[key_pfx + 'k_proj' + key_suffix] = values[1] |
|
new_sd[key_pfx + 'v_proj' + key_suffix] = values[2] |
|
|
|
|
|
new_sd['text_model.embeddings.position_ids'] = torch.Tensor( |
|
[list(range(max_length))] |
|
).to(torch.int64) |
|
return new_sd |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def conv_transformer_to_linear(checkpoint): |
|
keys = list(checkpoint.keys()) |
|
tf_keys = ['proj_in.weight', 'proj_out.weight'] |
|
for key in keys: |
|
if '.'.join(key.split('.')[-2:]) in tf_keys: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0, 0] |
|
|
|
|
|
def convert_unet_state_dict_to_sd(v2, unet_state_dict): |
|
unet_conversion_map = [ |
|
|
|
('time_embed.0.weight', 'time_embedding.linear_1.weight'), |
|
('time_embed.0.bias', 'time_embedding.linear_1.bias'), |
|
('time_embed.2.weight', 'time_embedding.linear_2.weight'), |
|
('time_embed.2.bias', 'time_embedding.linear_2.bias'), |
|
('input_blocks.0.0.weight', 'conv_in.weight'), |
|
('input_blocks.0.0.bias', 'conv_in.bias'), |
|
('out.0.weight', 'conv_norm_out.weight'), |
|
('out.0.bias', 'conv_norm_out.bias'), |
|
('out.2.weight', 'conv_out.weight'), |
|
('out.2.bias', 'conv_out.bias'), |
|
] |
|
|
|
unet_conversion_map_resnet = [ |
|
|
|
('in_layers.0', 'norm1'), |
|
('in_layers.2', 'conv1'), |
|
('out_layers.0', 'norm2'), |
|
('out_layers.3', 'conv2'), |
|
('emb_layers.1', 'time_emb_proj'), |
|
('skip_connection', 'conv_shortcut'), |
|
] |
|
|
|
unet_conversion_map_layer = [] |
|
for i in range(4): |
|
|
|
|
|
for j in range(2): |
|
|
|
hf_down_res_prefix = f'down_blocks.{i}.resnets.{j}.' |
|
sd_down_res_prefix = f'input_blocks.{3*i + j + 1}.0.' |
|
unet_conversion_map_layer.append( |
|
(sd_down_res_prefix, hf_down_res_prefix) |
|
) |
|
|
|
if i < 3: |
|
|
|
hf_down_atn_prefix = f'down_blocks.{i}.attentions.{j}.' |
|
sd_down_atn_prefix = f'input_blocks.{3*i + j + 1}.1.' |
|
unet_conversion_map_layer.append( |
|
(sd_down_atn_prefix, hf_down_atn_prefix) |
|
) |
|
|
|
for j in range(3): |
|
|
|
hf_up_res_prefix = f'up_blocks.{i}.resnets.{j}.' |
|
sd_up_res_prefix = f'output_blocks.{3*i + j}.0.' |
|
unet_conversion_map_layer.append( |
|
(sd_up_res_prefix, hf_up_res_prefix) |
|
) |
|
|
|
if i > 0: |
|
|
|
hf_up_atn_prefix = f'up_blocks.{i}.attentions.{j}.' |
|
sd_up_atn_prefix = f'output_blocks.{3*i + j}.1.' |
|
unet_conversion_map_layer.append( |
|
(sd_up_atn_prefix, hf_up_atn_prefix) |
|
) |
|
|
|
if i < 3: |
|
|
|
hf_downsample_prefix = f'down_blocks.{i}.downsamplers.0.conv.' |
|
sd_downsample_prefix = f'input_blocks.{3*(i+1)}.0.op.' |
|
unet_conversion_map_layer.append( |
|
(sd_downsample_prefix, hf_downsample_prefix) |
|
) |
|
|
|
|
|
hf_upsample_prefix = f'up_blocks.{i}.upsamplers.0.' |
|
sd_upsample_prefix = ( |
|
f'output_blocks.{3*i + 2}.{1 if i == 0 else 2}.' |
|
) |
|
unet_conversion_map_layer.append( |
|
(sd_upsample_prefix, hf_upsample_prefix) |
|
) |
|
|
|
hf_mid_atn_prefix = 'mid_block.attentions.0.' |
|
sd_mid_atn_prefix = 'middle_block.1.' |
|
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) |
|
|
|
for j in range(2): |
|
hf_mid_res_prefix = f'mid_block.resnets.{j}.' |
|
sd_mid_res_prefix = f'middle_block.{2*j}.' |
|
unet_conversion_map_layer.append( |
|
(sd_mid_res_prefix, hf_mid_res_prefix) |
|
) |
|
|
|
|
|
|
|
|
|
mapping = {k: k for k in unet_state_dict.keys()} |
|
for sd_name, hf_name in unet_conversion_map: |
|
mapping[hf_name] = sd_name |
|
for k, v in mapping.items(): |
|
if 'resnets' in k: |
|
for sd_part, hf_part in unet_conversion_map_resnet: |
|
v = v.replace(hf_part, sd_part) |
|
mapping[k] = v |
|
for k, v in mapping.items(): |
|
for sd_part, hf_part in unet_conversion_map_layer: |
|
v = v.replace(hf_part, sd_part) |
|
mapping[k] = v |
|
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} |
|
|
|
if v2: |
|
conv_transformer_to_linear(new_state_dict) |
|
|
|
return new_state_dict |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def reshape_weight_for_sd(w): |
|
|
|
return w.reshape(*w.shape, 1, 1) |
|
|
|
|
|
def convert_vae_state_dict(vae_state_dict): |
|
vae_conversion_map = [ |
|
|
|
('nin_shortcut', 'conv_shortcut'), |
|
('norm_out', 'conv_norm_out'), |
|
('mid.attn_1.', 'mid_block.attentions.0.'), |
|
] |
|
|
|
for i in range(4): |
|
|
|
for j in range(2): |
|
hf_down_prefix = f'encoder.down_blocks.{i}.resnets.{j}.' |
|
sd_down_prefix = f'encoder.down.{i}.block.{j}.' |
|
vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) |
|
|
|
if i < 3: |
|
hf_downsample_prefix = f'down_blocks.{i}.downsamplers.0.' |
|
sd_downsample_prefix = f'down.{i}.downsample.' |
|
vae_conversion_map.append( |
|
(sd_downsample_prefix, hf_downsample_prefix) |
|
) |
|
|
|
hf_upsample_prefix = f'up_blocks.{i}.upsamplers.0.' |
|
sd_upsample_prefix = f'up.{3-i}.upsample.' |
|
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) |
|
|
|
|
|
|
|
for j in range(3): |
|
hf_up_prefix = f'decoder.up_blocks.{i}.resnets.{j}.' |
|
sd_up_prefix = f'decoder.up.{3-i}.block.{j}.' |
|
vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) |
|
|
|
|
|
for i in range(2): |
|
hf_mid_res_prefix = f'mid_block.resnets.{i}.' |
|
sd_mid_res_prefix = f'mid.block_{i+1}.' |
|
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) |
|
|
|
vae_conversion_map_attn = [ |
|
|
|
('norm.', 'group_norm.'), |
|
('q.', 'query.'), |
|
('k.', 'key.'), |
|
('v.', 'value.'), |
|
('proj_out.', 'proj_attn.'), |
|
] |
|
|
|
mapping = {k: k for k in vae_state_dict.keys()} |
|
for k, v in mapping.items(): |
|
for sd_part, hf_part in vae_conversion_map: |
|
v = v.replace(hf_part, sd_part) |
|
mapping[k] = v |
|
for k, v in mapping.items(): |
|
if 'attentions' in k: |
|
for sd_part, hf_part in vae_conversion_map_attn: |
|
v = v.replace(hf_part, sd_part) |
|
mapping[k] = v |
|
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()} |
|
weights_to_convert = ['q', 'k', 'v', 'proj_out'] |
|
for k, v in new_state_dict.items(): |
|
for weight_name in weights_to_convert: |
|
if f'mid.attn_1.{weight_name}.weight' in k: |
|
|
|
new_state_dict[k] = reshape_weight_for_sd(v) |
|
|
|
return new_state_dict |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def is_safetensors(path): |
|
return os.path.splitext(path)[1].lower() == '.safetensors' |
|
|
|
|
|
def load_checkpoint_with_text_encoder_conversion(ckpt_path): |
|
|
|
TEXT_ENCODER_KEY_REPLACEMENTS = [ |
|
( |
|
'cond_stage_model.transformer.embeddings.', |
|
'cond_stage_model.transformer.text_model.embeddings.', |
|
), |
|
( |
|
'cond_stage_model.transformer.encoder.', |
|
'cond_stage_model.transformer.text_model.encoder.', |
|
), |
|
( |
|
'cond_stage_model.transformer.final_layer_norm.', |
|
'cond_stage_model.transformer.text_model.final_layer_norm.', |
|
), |
|
] |
|
|
|
if is_safetensors(ckpt_path): |
|
checkpoint = None |
|
state_dict = load_file(ckpt_path, 'cpu') |
|
else: |
|
checkpoint = torch.load(ckpt_path, map_location='cpu') |
|
if 'state_dict' in checkpoint: |
|
state_dict = checkpoint['state_dict'] |
|
else: |
|
state_dict = checkpoint |
|
checkpoint = None |
|
|
|
key_reps = [] |
|
for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS: |
|
for key in state_dict.keys(): |
|
if key.startswith(rep_from): |
|
new_key = rep_to + key[len(rep_from) :] |
|
key_reps.append((key, new_key)) |
|
|
|
for key, new_key in key_reps: |
|
state_dict[new_key] = state_dict[key] |
|
del state_dict[key] |
|
|
|
return checkpoint, state_dict |
|
|
|
|
|
|
|
def load_models_from_stable_diffusion_checkpoint(v2, ckpt_path, dtype=None): |
|
_, state_dict = load_checkpoint_with_text_encoder_conversion(ckpt_path) |
|
if dtype is not None: |
|
for k, v in state_dict.items(): |
|
if type(v) is torch.Tensor: |
|
state_dict[k] = v.to(dtype) |
|
|
|
|
|
unet_config = create_unet_diffusers_config(v2) |
|
converted_unet_checkpoint = convert_ldm_unet_checkpoint( |
|
v2, state_dict, unet_config |
|
) |
|
|
|
unet = UNet2DConditionModel(**unet_config) |
|
info = unet.load_state_dict(converted_unet_checkpoint) |
|
print('loading u-net:', info) |
|
|
|
|
|
vae_config = create_vae_diffusers_config() |
|
converted_vae_checkpoint = convert_ldm_vae_checkpoint( |
|
state_dict, vae_config |
|
) |
|
|
|
vae = AutoencoderKL(**vae_config) |
|
info = vae.load_state_dict(converted_vae_checkpoint) |
|
print('loadint vae:', info) |
|
|
|
|
|
if v2: |
|
converted_text_encoder_checkpoint = convert_ldm_clip_checkpoint_v2( |
|
state_dict, 77 |
|
) |
|
cfg = CLIPTextConfig( |
|
vocab_size=49408, |
|
hidden_size=1024, |
|
intermediate_size=4096, |
|
num_hidden_layers=23, |
|
num_attention_heads=16, |
|
max_position_embeddings=77, |
|
hidden_act='gelu', |
|
layer_norm_eps=1e-05, |
|
dropout=0.0, |
|
attention_dropout=0.0, |
|
initializer_range=0.02, |
|
initializer_factor=1.0, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
model_type='clip_text_model', |
|
projection_dim=512, |
|
torch_dtype='float32', |
|
transformers_version='4.25.0.dev0', |
|
) |
|
text_model = CLIPTextModel._from_config(cfg) |
|
info = text_model.load_state_dict(converted_text_encoder_checkpoint) |
|
else: |
|
converted_text_encoder_checkpoint = convert_ldm_clip_checkpoint_v1( |
|
state_dict |
|
) |
|
text_model = CLIPTextModel.from_pretrained( |
|
'openai/clip-vit-large-patch14' |
|
) |
|
info = text_model.load_state_dict(converted_text_encoder_checkpoint) |
|
print('loading text encoder:', info) |
|
|
|
return text_model, vae, unet |
|
|
|
|
|
def convert_text_encoder_state_dict_to_sd_v2( |
|
checkpoint, make_dummy_weights=False |
|
): |
|
def convert_key(key): |
|
|
|
if '.position_ids' in key: |
|
return None |
|
|
|
|
|
key = key.replace('text_model.encoder.', 'transformer.') |
|
key = key.replace('text_model.', '') |
|
if 'layers' in key: |
|
|
|
key = key.replace('.layers.', '.resblocks.') |
|
if '.layer_norm' in key: |
|
key = key.replace('.layer_norm', '.ln_') |
|
elif '.mlp.' in key: |
|
key = key.replace('.fc1.', '.c_fc.') |
|
key = key.replace('.fc2.', '.c_proj.') |
|
elif '.self_attn.out_proj' in key: |
|
key = key.replace('.self_attn.out_proj.', '.attn.out_proj.') |
|
elif '.self_attn.' in key: |
|
key = None |
|
else: |
|
raise ValueError(f'unexpected key in DiffUsers model: {key}') |
|
elif '.position_embedding' in key: |
|
key = key.replace( |
|
'embeddings.position_embedding.weight', 'positional_embedding' |
|
) |
|
elif '.token_embedding' in key: |
|
key = key.replace( |
|
'embeddings.token_embedding.weight', 'token_embedding.weight' |
|
) |
|
elif 'final_layer_norm' in key: |
|
key = key.replace('final_layer_norm', 'ln_final') |
|
return key |
|
|
|
keys = list(checkpoint.keys()) |
|
new_sd = {} |
|
for key in keys: |
|
new_key = convert_key(key) |
|
if new_key is None: |
|
continue |
|
new_sd[new_key] = checkpoint[key] |
|
|
|
|
|
for key in keys: |
|
if 'layers' in key and 'q_proj' in key: |
|
|
|
key_q = key |
|
key_k = key.replace('q_proj', 'k_proj') |
|
key_v = key.replace('q_proj', 'v_proj') |
|
|
|
value_q = checkpoint[key_q] |
|
value_k = checkpoint[key_k] |
|
value_v = checkpoint[key_v] |
|
value = torch.cat([value_q, value_k, value_v]) |
|
|
|
new_key = key.replace( |
|
'text_model.encoder.layers.', 'transformer.resblocks.' |
|
) |
|
new_key = new_key.replace('.self_attn.q_proj.', '.attn.in_proj_') |
|
new_sd[new_key] = value |
|
|
|
|
|
if make_dummy_weights: |
|
print( |
|
'make dummy weights for resblock.23, text_projection and logit scale.' |
|
) |
|
keys = list(new_sd.keys()) |
|
for key in keys: |
|
if key.startswith('transformer.resblocks.22.'): |
|
new_sd[key.replace('.22.', '.23.')] = new_sd[ |
|
key |
|
].clone() |
|
|
|
|
|
new_sd['text_projection'] = torch.ones( |
|
(1024, 1024), |
|
dtype=new_sd[keys[0]].dtype, |
|
device=new_sd[keys[0]].device, |
|
) |
|
new_sd['logit_scale'] = torch.tensor(1) |
|
|
|
return new_sd |
|
|
|
|
|
def save_stable_diffusion_checkpoint( |
|
v2, |
|
output_file, |
|
text_encoder, |
|
unet, |
|
ckpt_path, |
|
epochs, |
|
steps, |
|
save_dtype=None, |
|
vae=None, |
|
): |
|
if ckpt_path is not None: |
|
|
|
checkpoint, state_dict = load_checkpoint_with_text_encoder_conversion( |
|
ckpt_path |
|
) |
|
if checkpoint is None: |
|
checkpoint = {} |
|
strict = False |
|
else: |
|
strict = True |
|
if 'state_dict' in state_dict: |
|
del state_dict['state_dict'] |
|
else: |
|
|
|
assert ( |
|
vae is not None |
|
), 'VAE is required to save a checkpoint without a given checkpoint' |
|
checkpoint = {} |
|
state_dict = {} |
|
strict = False |
|
|
|
def update_sd(prefix, sd): |
|
for k, v in sd.items(): |
|
key = prefix + k |
|
assert ( |
|
not strict or key in state_dict |
|
), f'Illegal key in save SD: {key}' |
|
if save_dtype is not None: |
|
v = v.detach().clone().to('cpu').to(save_dtype) |
|
state_dict[key] = v |
|
|
|
|
|
unet_state_dict = convert_unet_state_dict_to_sd(v2, unet.state_dict()) |
|
update_sd('model.diffusion_model.', unet_state_dict) |
|
|
|
|
|
if v2: |
|
make_dummy = ( |
|
ckpt_path is None |
|
) |
|
text_enc_dict = convert_text_encoder_state_dict_to_sd_v2( |
|
text_encoder.state_dict(), make_dummy |
|
) |
|
update_sd('cond_stage_model.model.', text_enc_dict) |
|
else: |
|
text_enc_dict = text_encoder.state_dict() |
|
update_sd('cond_stage_model.transformer.', text_enc_dict) |
|
|
|
|
|
if vae is not None: |
|
vae_dict = convert_vae_state_dict(vae.state_dict()) |
|
update_sd('first_stage_model.', vae_dict) |
|
|
|
|
|
key_count = len(state_dict.keys()) |
|
new_ckpt = {'state_dict': state_dict} |
|
|
|
if 'epoch' in checkpoint: |
|
epochs += checkpoint['epoch'] |
|
if 'global_step' in checkpoint: |
|
steps += checkpoint['global_step'] |
|
|
|
new_ckpt['epoch'] = epochs |
|
new_ckpt['global_step'] = steps |
|
|
|
if is_safetensors(output_file): |
|
|
|
save_file(state_dict, output_file) |
|
else: |
|
torch.save(new_ckpt, output_file) |
|
|
|
return key_count |
|
|
|
|
|
def save_diffusers_checkpoint( |
|
v2, |
|
output_dir, |
|
text_encoder, |
|
unet, |
|
pretrained_model_name_or_path, |
|
vae=None, |
|
use_safetensors=False, |
|
): |
|
if pretrained_model_name_or_path is None: |
|
|
|
if v2: |
|
pretrained_model_name_or_path = DIFFUSERS_REF_MODEL_ID_V2 |
|
else: |
|
pretrained_model_name_or_path = DIFFUSERS_REF_MODEL_ID_V1 |
|
|
|
scheduler = DDIMScheduler.from_pretrained( |
|
pretrained_model_name_or_path, subfolder='scheduler' |
|
) |
|
tokenizer = CLIPTokenizer.from_pretrained( |
|
pretrained_model_name_or_path, subfolder='tokenizer' |
|
) |
|
if vae is None: |
|
vae = AutoencoderKL.from_pretrained( |
|
pretrained_model_name_or_path, subfolder='vae' |
|
) |
|
|
|
pipeline = StableDiffusionPipeline( |
|
unet=unet, |
|
text_encoder=text_encoder, |
|
vae=vae, |
|
scheduler=scheduler, |
|
tokenizer=tokenizer, |
|
safety_checker=None, |
|
feature_extractor=None, |
|
requires_safety_checker=None, |
|
) |
|
pipeline.save_pretrained(output_dir, safe_serialization=use_safetensors) |
|
|
|
|
|
VAE_PREFIX = 'first_stage_model.' |
|
|
|
|
|
def load_vae(vae_id, dtype): |
|
print(f'load VAE: {vae_id}') |
|
if os.path.isdir(vae_id) or not os.path.isfile(vae_id): |
|
|
|
try: |
|
vae = AutoencoderKL.from_pretrained( |
|
vae_id, subfolder=None, torch_dtype=dtype |
|
) |
|
except EnvironmentError as e: |
|
print(f'exception occurs in loading vae: {e}') |
|
print("retry with subfolder='vae'") |
|
vae = AutoencoderKL.from_pretrained( |
|
vae_id, subfolder='vae', torch_dtype=dtype |
|
) |
|
return vae |
|
|
|
|
|
vae_config = create_vae_diffusers_config() |
|
|
|
if vae_id.endswith('.bin'): |
|
|
|
vae_sd = torch.load(vae_id, map_location='cpu') |
|
converted_vae_checkpoint = vae_sd |
|
else: |
|
|
|
vae_model = torch.load(vae_id, map_location='cpu') |
|
vae_sd = vae_model['state_dict'] |
|
|
|
|
|
full_model = False |
|
for vae_key in vae_sd: |
|
if vae_key.startswith(VAE_PREFIX): |
|
full_model = True |
|
break |
|
if not full_model: |
|
sd = {} |
|
for key, value in vae_sd.items(): |
|
sd[VAE_PREFIX + key] = value |
|
vae_sd = sd |
|
del sd |
|
|
|
|
|
converted_vae_checkpoint = convert_ldm_vae_checkpoint( |
|
vae_sd, vae_config |
|
) |
|
|
|
vae = AutoencoderKL(**vae_config) |
|
vae.load_state_dict(converted_vae_checkpoint) |
|
return vae |
|
|
|
|
|
def get_epoch_ckpt_name(use_safetensors, epoch): |
|
return f'epoch-{epoch:06d}' + ( |
|
'.safetensors' if use_safetensors else '.ckpt' |
|
) |
|
|
|
|
|
def get_last_ckpt_name(use_safetensors): |
|
return f'last' + ('.safetensors' if use_safetensors else '.ckpt') |
|
|
|
|
|
|
|
|
|
|
|
def make_bucket_resolutions( |
|
max_reso, min_size=256, max_size=1024, divisible=64 |
|
): |
|
max_width, max_height = max_reso |
|
max_area = (max_width // divisible) * (max_height // divisible) |
|
|
|
resos = set() |
|
|
|
size = int(math.sqrt(max_area)) * divisible |
|
resos.add((size, size)) |
|
|
|
size = min_size |
|
while size <= max_size: |
|
width = size |
|
height = min(max_size, (max_area // (width // divisible)) * divisible) |
|
resos.add((width, height)) |
|
resos.add((height, width)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
size += divisible |
|
|
|
resos = list(resos) |
|
resos.sort() |
|
|
|
aspect_ratios = [w / h for w, h in resos] |
|
return resos, aspect_ratios |
|
|
|
|
|
if __name__ == '__main__': |
|
resos, aspect_ratios = make_bucket_resolutions((512, 768)) |
|
print(len(resos)) |
|
print(resos) |
|
print(aspect_ratios) |
|
|
|
ars = set() |
|
for ar in aspect_ratios: |
|
if ar in ars: |
|
print('error! duplicate ar:', ar) |
|
ars.add(ar) |
|
|