ManglerFTW's picture
Upload 12 files
3a18eba
raw
history blame
239 kB
import tkinter as tk
import os
import sys
import sysconfig
import subprocess
from tkinter import *
from tkinter import ttk
import tkinter.filedialog as fd
import json
from tkinter import messagebox
from PIL import Image, ImageTk,ImageOps,ImageDraw
import glob
import converters
import shutil
from datetime import datetime
import pyperclip
import random
import customtkinter as ctk
import random
import subprocess
from pathlib import Path
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionDepth2ImgPipeline
ctk.set_appearance_mode("dark")
ctk.set_default_color_theme("blue")
#work in progress code, not finished, credits will be added at a later date.
#class to make a generated image preview for the playground window, should open a new window alongside the playground window
class GeneratedImagePreview(ctk.CTkToplevel):
def __init__(self, parent, *args, **kwargs):
ctk.CTkToplevel.__init__(self, parent, *args, **kwargs)
#title
self.title("Viewfinder")
self.parent = parent
self.configure(bg_color="transparent")
#frame
self.frame = ctk.CTkFrame(self, bg_color="transparent")
self.frame.pack(fill="both", expand=True)
#add tip label
self.tip_label = ctk.CTkLabel(self.frame,text='Press the right arrow or enter to generate a new image', bg_color="transparent")
self.tip_label.pack(fill="both", expand=True)
#image
self.image_preview_label = ctk.CTkLabel(self.frame,text='', bg_color="transparent")
self.image_preview_label.pack(fill="both", expand=True)
# run on close
self.protocol("WM_DELETE_WINDOW", self.on_close)
#bind next image to right arrow
self.bind("<Right>", lambda event: self.next_image())
#bind to enter to generate a new image
self.bind("<Return>", lambda event: self.next_image())
def next_image(self, event=None):
self.parent.generate_next_image()
def on_close(self):
self.parent.generation_window = None
self.destroy()
def ingest_image(self, image):
self.geometry(f"{image.width + 50}x{image.height + 50}")
self.image_preview_label.configure(image=ctk.CTkImage(image,size=(image.width,image.height)))
#resize window
#class to make a concept top level window
class ConceptWidget(ctk.CTkFrame):
#a widget that holds a concept and opens a concept window when clicked
def __init__(self, parent, concept=None,width=150,height=150, *args, **kwargs):
ctk.CTkFrame.__init__(self, parent, *args, **kwargs)
self.parent = parent
self.concept = concept
#if concept is none, make a new concept
if self.concept == None:
self.default_image_preview = Image.open("resources/stableTuner_logo.png").resize((150, 150), Image.Resampling.LANCZOS)
#self.default_image_preview = ImageTk.PhotoImage(self.default_image_preview)
self.concept_name = "New Concept"
self.concept_data_path = ""
self.concept_class_name = ""
self.concept_class_path = ""
self.flip_p = ''
self.concept_do_not_balance = False
self.process_sub_dirs = False
self.image_preview = self.default_image_preview
#create concept
self.concept = Concept(self.concept_name, self.concept_data_path, self.concept_class_name, self.concept_class_path,self.flip_p, self.concept_do_not_balance,self.process_sub_dirs, self.image_preview, None)
else:
self.concept = concept
self.concept.image_preview = self.make_image_preview()
self.width = width
self.height = height
self.configure(fg_color='transparent',border_width=0)
self.concept_frame = ctk.CTkFrame(self, width=400, height=300,fg_color='transparent',border_width=0)
self.concept_frame.grid_columnconfigure(0, weight=1)
self.concept_frame.grid_rowconfigure(0, weight=1)
self.concept_frame.grid(row=0, column=0, sticky="nsew")
#concept image
#if self.concept.image_preview is type(str):
# self.concept.image_preview = Image.open(self.concept.image_preview)
self.concept_image_label = ctk.CTkLabel(self.concept_frame,text='',width=width,height=height, image=ctk.CTkImage(self.concept.image_preview,size=(100,100)))
self.concept_image_label.grid(row=0, column=0, sticky="nsew")
#ctk button with name as text and image as preview
self.concept_button = ctk.CTkLabel(self.concept_frame, text=self.concept.concept_name,bg_color='transparent', compound="top")
self.concept_button.grid(row=1, column=0, sticky="nsew")
#bind the button to open a concept window
self.concept_button.bind("<Button-1>", lambda event: self.open_concept_window())
self.concept_image_label.bind("<Button-1>", lambda event: self.open_concept_window())
def resize_widget(self,width,height):
self.image_preview = self.image_preview.configure(size=(width,height))
self.concept_image_label.configure(width=width,height=height,image=self.image_preview)
def make_image_preview(self):
def add_corners(im, rad):
circle = Image.new('L', (rad * 2, rad * 2), 0)
draw = ImageDraw.Draw(circle)
draw.ellipse((0, 0, rad * 2, rad * 2), fill=255)
alpha = Image.new('L', im.size, "white")
w, h = im.size
alpha.paste(circle.crop((0, 0, rad, rad)), (0, 0))
alpha.paste(circle.crop((0, rad, rad, rad * 2)), (0, h - rad))
alpha.paste(circle.crop((rad, 0, rad * 2, rad)), (w - rad, 0))
alpha.paste(circle.crop((rad, rad, rad * 2, rad * 2)), (w - rad, h - rad))
im.putalpha(alpha)
return im
path = self.concept.concept_path
icon = 'resources/stableTuner_icon.png'
#create a photoimage object of the image in the path
icon = Image.open(icon)
#resize the image
image = icon.resize((150, 150), Image.Resampling.LANCZOS)
if path != "" and path != None:
if os.path.exists(path):
files = []
#if there are sub directories
if self.concept.process_sub_dirs:
#get a list of all sub directories
sub_dirs = [f.path for f in os.scandir(path) if f.is_dir()]
#if there are sub directories
if len(sub_dirs) != 0:
#collect all images in sub directories
for sub_dir in sub_dirs:
#collect the full path of all files in the sub directory to files
files += [os.path.join(sub_dir, f) for f in os.listdir(sub_dir)]
#if there are no sub directories
else:
files = [os.path.join(path, f) for f in os.listdir(path)]
#omit sub directories
files = [f for f in files if not os.path.isdir(f)]
if len(files) != 0:
for i in range(4):
#get an image from the path
import random
#filter files for images
files = [f for f in files if (f.endswith(".jpg") or f.endswith(".png") or f.endswith(".jpeg")) and not f.endswith("-masklabel.png") and not f.endswith("-depth.png")]
if len(files) != 0:
rand = random.choice(files)
image_path = rand
#remove image_path from files
if len(files) > 4:
files.remove(rand)
#files.pop(image_path)
#open the image
#print(image_path)
image_to_add = Image.open(image_path)
#resize the image to 38x38
#resize to 150x150 closest to the original aspect ratio
image_to_add.thumbnail((75, 75), Image.Resampling.LANCZOS)
#decide where to put the image
if i == 0:
#top left
image.paste(image_to_add, (0, 0))
elif i == 1:
#top right
image.paste(image_to_add, (75, 0))
elif i == 2:
#bottom left
image.paste(image_to_add, (0, 75))
elif i == 3:
#bottom right
image.paste(image_to_add, (75, 75))
image = add_corners(image, 30)
#convert the image to a photoimage
#image.show()
newImage=ctk.CTkImage(image,size=(100,100))
#print(image)
self.image_preview = image
return image
def open_concept_window(self, event=None):
#open a concept window
self.concept_window = ConceptWindow(parent=self.parent, conceptWidget=self, concept=self.concept)
self.concept_window.mainloop()
def update_button(self):
#update the button with the new concept name
self.concept_button.configure(text=self.concept.concept_name)
#update the preview image
self.concept_image_label.configure(image=ctk.CTkImage(self.concept.image_preview,size=(100,100)))
class ConceptWindow(ctk.CTkToplevel):
#init function
def __init__(self, parent,conceptWidget,concept,*args, **kwargs):
ctk.CTkToplevel.__init__(self, parent, *args, **kwargs)
#set title
self.title("Concept Editor")
self.parent = parent
self.conceptWidget = conceptWidget
self.concept = concept
self.geometry("576x297")
self.resizable(False, False)
#self.protocol("WM_DELETE_WINDOW", self.on_close)
self.wait_visibility()
self.grab_set()
self.focus_set()
self.default_image_preview = Image.open("resources/stableTuner_icon.png").resize((150, 150), Image.Resampling.LANCZOS)
#self.default_image_preview = ImageTk.PhotoImage(self.default_image_preview)
#make a frame for the concept window
self.concept_frame = ctk.CTkFrame(self, width=600, height=300)
self.concept_frame.grid(row=0, column=0, sticky="nsew",padx=10,pady=10)
self.concept_frame_subframe=ctk.CTkFrame(self.concept_frame, width=600, height=300)
#4 column grid
#self.concept_frame.grid_columnconfigure(0, weight=1)
#self.concept_frame.grid_columnconfigure(1, weight=5)
#self.concept_frame.grid_columnconfigure(2, weight=1)
#self.concept_frame.grid_columnconfigure(3, weight=3)
#make a label for concept name
self.concept_name_label = ctk.CTkLabel(self.concept_frame_subframe, text="Dataset Token/Name:")
self.concept_name_label.grid(row=0, column=0, sticky="nsew",padx=5,pady=5)
#make a entry box for concept name
self.concept_name_entry = ctk.CTkEntry(self.concept_frame_subframe,width=200)
#create right click menu
self.concept_name_entry.bind("<Button-3>", self.create_right_click_menu)
self.concept_name_entry.grid(row=0, column=1, sticky="e",padx=5,pady=5)
self.concept_name_entry.insert(0, self.concept.concept_name)
#make a label for concept path
self.concept_path_label = ctk.CTkLabel(self.concept_frame_subframe, text="Data Path:")
self.concept_path_label.grid(row=1, column=0, sticky="nsew",padx=5,pady=5)
#make a entry box for concept path
self.concept_path_entry = ctk.CTkEntry(self.concept_frame_subframe,width=200)
#create right click menu
self.concept_path_entry.bind("<Button-3>", self.create_right_click_menu)
self.concept_path_entry.grid(row=1, column=1, sticky="e",padx=5,pady=5)
#on focus out, update the preview image
self.concept_path_entry.bind("<FocusOut>", lambda event: self.update_preview_image(self.concept_path_entry))
self.concept_path_entry.insert(0, self.concept.concept_path)
#make a button to browse for concept path
self.concept_path_button = ctk.CTkButton(self.concept_frame_subframe,width=30, text="...", command=lambda: self.browse_for_path(self.concept_path_entry))
self.concept_path_button.grid(row=1, column=2, sticky="w",padx=5,pady=5)
#make a label for Class Name
self.class_name_label = ctk.CTkLabel(self.concept_frame_subframe, text="Class Name:")
self.class_name_label.grid(row=2, column=0, sticky="nsew",padx=5,pady=5)
#make a entry box for Class Name
self.class_name_entry = ctk.CTkEntry(self.concept_frame_subframe,width=200)
#create right click menu
self.class_name_entry.bind("<Button-3>", self.create_right_click_menu)
self.class_name_entry.grid(row=2, column=1, sticky="e",padx=5,pady=5)
self.class_name_entry.insert(0, self.concept.concept_class_name)
#make a label for Class Path
self.class_path_label = ctk.CTkLabel(self.concept_frame_subframe, text="Class Path:")
self.class_path_label.grid(row=3, column=0, sticky="nsew",padx=5,pady=5)
#make a entry box for Class Path
self.class_path_entry = ctk.CTkEntry(self.concept_frame_subframe,width=200)
#create right click menu
self.class_path_entry.bind("<Button-3>", self.create_right_click_menu)
self.class_path_entry.grid(row=3, column=1, sticky="e",padx=5,pady=5)
self.class_path_entry.insert(0, self.concept.concept_class_path)
#make a button to browse for Class Path
self.class_path_button = ctk.CTkButton(self.concept_frame_subframe,width=30, text="...", command=lambda: self.browse_for_path(entry_box=self.class_path_entry))
self.class_path_button.grid(row=3, column=2, sticky="w",padx=5,pady=5)
#entry and label for flip probability
self.flip_probability_label = ctk.CTkLabel(self.concept_frame_subframe, text="Flip Probability:")
self.flip_probability_label.grid(row=4, column=0, sticky="nsew",padx=5,pady=5)
self.flip_probability_entry = ctk.CTkEntry(self.concept_frame_subframe,width=200,placeholder_text="0.0 - 1.0")
self.flip_probability_entry.grid(row=4, column=1, sticky="e",padx=5,pady=5)
if self.concept.flip_p != '':
self.flip_probability_entry.insert(0, self.concept.flip_p)
#self.flip_probability_entry.bind("<button-3>", self.create_right_click_menu)
#make a label for dataset balancingprocess_sub_dirs
self.balance_dataset_label = ctk.CTkLabel(self.concept_frame_subframe, text="Don't Balance Dataset")
self.balance_dataset_label.grid(row=5, column=0, sticky="nsew",padx=5,pady=5)
#make a switch to enable or disable dataset balancing
self.balance_dataset_switch = ctk.CTkSwitch(self.concept_frame_subframe, text="", variable=tk.BooleanVar())
self.balance_dataset_switch.grid(row=5, column=1, sticky="e",padx=5,pady=5)
if self.concept.concept_do_not_balance == True:
self.balance_dataset_switch.toggle()
self.process_sub_dirs = ctk.CTkLabel(self.concept_frame_subframe, text="Search Sub-Directories")
self.process_sub_dirs.grid(row=6, column=0, sticky="nsew",padx=5,pady=5)
#make a switch to enable or disable dataset balancing
self.process_sub_dirs_switch = ctk.CTkSwitch(self.concept_frame_subframe, text="", variable=tk.BooleanVar())
self.process_sub_dirs_switch.grid(row=6, column=1, sticky="e",padx=5,pady=5)
if self.concept.process_sub_dirs == True:
self.process_sub_dirs_switch.toggle()
#self.balance_dataset_switch.set(self.concept.concept_do_not_balance)
#add image preview
self.image_preview_label = ctk.CTkLabel(self.concept_frame_subframe,text='', width=150, height=150,image=ctk.CTkImage(self.default_image_preview,size=(150,150)))
self.image_preview_label.grid(row=0, column=4,rowspan=5, sticky="nsew",padx=5,pady=5)
if self.concept.image_preview != None or self.concept.image_preview != "":
#print(self.concept.image_preview)
self.update_preview_image(entry=None,path=None,pil_image=self.concept.image_preview)
elif self.concept.concept_data_path != "":
self.update_preview_image(entry=None,path=self.concept_data_path)
#self.image_container = self.image_preview_label.create_image(0, 0, anchor="nw", image=test_image)
#make a save button
self.save_button = ctk.CTkButton(self.concept_frame_subframe, text="Save", command=self.save)
self.save_button.grid(row=6, column=3,columnspan=3,rowspan=1, sticky="nsew",padx=10,pady=10)
#make a delete button
#self.delete_button = ctk.CTkButton(self.concept_frame_subframe, text="Delete", command=self.delete)
#self.delete_button.grid(row=6, column=3,columnspan=2, sticky="nsew")
self.concept_frame_subframe.pack(fill="both", expand=True)
#placeholder hack focus in and out of the entry box flip probability
def create_right_click_menu(self, event):
#create a menu
self.menu = Menu(self.master, tearoff=0)
self.menu.config(font=("Segoe UI", 15))
#set dark colors for the menu
self.menu.configure(bg="#2d2d2d", fg="#ffffff", activebackground="#2d2d2d", activeforeground="#ffffff")
#add commands to the menu
self.menu.add_command(label="Cut", command=lambda: self.focus_get().event_generate("<<Cut>>"))
self.menu.add_command(label="Copy", command=lambda: self.focus_get().event_generate("<<Copy>>"))
self.menu.add_command(label="Paste", command=lambda: self.focus_get().event_generate("<<Paste>>"))
self.menu.add_command(label="Select All", command=lambda: self.focus_get().event_generate("<<SelectAll>>"))
#display the menu
try:
self.menu.tk_popup(event.x_root, event.y_root)
finally:
#make sure to release the grab (Tk 8.0a1 only)
self.menu.grab_release()
def delete(self):
del self.concept
self.conceptWidget.destroy()
del self.conceptWidget
self.destroy()
#function to update image preview on change
def update_preview_image(self, entry=None, path=None, pil_image=None):
def add_corners(im, rad):
circle = Image.new('L', (rad * 2, rad * 2), 0)
draw = ImageDraw.Draw(circle)
draw.ellipse((0, 0, rad * 2, rad * 2), fill=255)
alpha = Image.new('L', im.size, "white")
w, h = im.size
alpha.paste(circle.crop((0, 0, rad, rad)), (0, 0))
alpha.paste(circle.crop((0, rad, rad, rad * 2)), (0, h - rad))
alpha.paste(circle.crop((rad, 0, rad * 2, rad)), (w - rad, 0))
alpha.paste(circle.crop((rad, rad, rad * 2, rad * 2)), (w - rad, h - rad))
im.putalpha(alpha)
return im
#check if entry has changed
if entry != None and path == None :
#get the path from the entry
path = entry.get()
#get the path from the entry
#path = event.widget.get()
#canvas = self.canvas
#image_container = self.image_container
icon = 'resources/stableTuner_icon.png'
#create a photoimage object of the image in the path
icon = Image.open(icon)
#resize the image
image = icon.resize((150, 150), Image.Resampling.LANCZOS)
if path != "" and path != None:
if os.path.exists(path):
files = []
#if there are sub directories in the path
if self.concept.process_sub_dirs or self.process_sub_dirs_switch.get() == 1:
#get a list of all sub directories
sub_dirs = [f.path for f in os.scandir(path) if f.is_dir()]
#if there are sub directories
if len(sub_dirs) != 0:
#collect all images in sub directories
for sub_dir in sub_dirs:
#collect the full path of all files in the sub directory to files
files += [os.path.join(sub_dir, f) for f in os.listdir(sub_dir)]
#if there are no sub directories
else:
files = [os.path.join(path, f) for f in os.listdir(path)]
#omit sub directories
files = [f for f in files if not os.path.isdir(f)]
if len(files) != 0:
for i in range(4):
#get an image from the path
import random
#filter files for images
files = [f for f in files if (f.endswith(".jpg") or f.endswith(".png") or f.endswith(".jpeg")) and not f.endswith("-masklabel.png") and not f.endswith("-depth.png")]
if len(files) != 0:
rand = random.choice(files)
image_path = os.path.join(path,rand)
#remove image_path from files
if len(files) > 4:
files.remove(rand)
#files.pop(image_path)
#open the image
#print(image_path)
image_to_add = Image.open(image_path)
#resize the image to 38x38
#resize to 150x150 closest to the original aspect ratio
image_to_add.thumbnail((75, 75), Image.Resampling.LANCZOS)
#decide where to put the image
if i == 0:
#top left
image.paste(image_to_add, (0, 0))
elif i == 1:
#top right
image.paste(image_to_add, (75, 0))
elif i == 2:
#bottom left
image.paste(image_to_add, (0, 75))
elif i == 3:
#bottom right
image.paste(image_to_add, (75, 75))
add_corners(image, 30)
#convert the image to a photoimage
#image.show()
if pil_image != None:
image = pil_image
#if image is of type PIL.Image.
newImage=ctk.CTkImage(image,size=(150,150))
self.image_preview = image
self.image_preview_label.configure(image=newImage)
#function to browse for concept path
def browse_for_path(self,entry_box):
#get the path from the user
path = fd.askdirectory()
#set the path to the entry box
#delete entry box text
entry_box.focus_set()
entry_box.delete(0, tk.END)
entry_box.insert(0, path)
self.focus_set()
#save the concept
def save(self):
#get the concept name
concept_name = self.concept_name_entry.get()
#get the concept path
concept_path = self.concept_path_entry.get()
#get the class name
class_name = self.class_name_entry.get()
#get the class path
class_path = self.class_path_entry.get()
#get the flip probability
flip_p = self.flip_probability_entry.get()
#get the dataset balancing
balance_dataset = self.balance_dataset_switch.get()
#create the concept
process_sub_dirs = self.process_sub_dirs_switch.get()
#image preview
image_preview = self.image_preview
#get the main window
image_preview_label = self.image_preview_label
#update the concept
self.concept.update(concept_name, concept_path, class_name, class_path,flip_p,balance_dataset,process_sub_dirs,image_preview,image_preview_label)
self.conceptWidget.update_button()
#close the window
self.destroy()
#class of the concept
class Concept:
def __init__(self, concept_name, concept_path, class_name, class_path,flip_p, balance_dataset=None,process_sub_dirs=None,image_preview=None, image_container=None):
if concept_name == None:
concept_name = ""
if concept_path == None:
concept_path = ""
if class_name == None:
class_name = ""
if class_path == None:
class_path = ""
if flip_p == None:
flip_p = ""
if balance_dataset == None:
balance_dataset = False
if process_sub_dirs == None:
process_sub_dirs = False
if image_preview == None:
image_preview = ""
if image_container == None:
image_container = ""
self.concept_name = concept_name
self.concept_path = concept_path
self.concept_class_name = class_name
self.concept_class_path = class_path
self.flip_p = flip_p
self.concept_do_not_balance = balance_dataset
self.image_preview = image_preview
self.image_container = image_container
self.process_sub_dirs = process_sub_dirs
#update the concept
def update(self, concept_name, concept_path, class_name, class_path,flip_p,balance_dataset,process_sub_dirs, image_preview, image_container):
self.concept_name = concept_name
self.concept_path = concept_path
self.concept_class_name = class_name
self.concept_class_path = class_path
self.flip_p = flip_p
self.image_preview = image_preview
self.image_container = image_container
self.concept_do_not_balance = balance_dataset
self.image_preview = image_preview
self.image_container = image_container
self.process_sub_dirs = process_sub_dirs
#get the cocept details
def get_details(self):
return self.concept_name, self.concept_path, self.concept_class_name, self.concept_class_path,self.flip_p, self.concept_do_not_balance,self.process_sub_dirs, self.image_preview, self.image_container
#class to make popup right click menu with select all, copy, paste, cut, and delete when right clicked on an entry box
class DynamicGrid(ctk.CTkFrame):
def __init__(self, parent, *args, **kwargs):
ctk.CTkFrame.__init__(self, parent, *args, **kwargs)
self.text = tk.Text(self, wrap="char", borderwidth=0, highlightthickness=0,
state="disabled")
self.text.pack(fill="both", expand=True)
self.boxes = []
def add_box(self, color=None):
#bg = color if color else random.choice(("red", "orange", "green", "blue", "violet"))
box = ctk.CTkFrame(self.text,width=100, height=100)
#add a ctkbutton to the frame
#ctk.CTkButton(box,text="test",command=lambda:print("test")).pack()
#add a ctklabel to the frame
ctk.CTkLabel(box,text="test").pack()
#add a ctkentry to the frame
ctk.CTkEntry(box).pack()
#add a ctkcombobox to the frame
#add a button remove the frame
ctk.CTkButton(box,text="remove",command=lambda:self.remove_box(box)).pack()
self.boxes.append(box)
self.text.configure(state="normal")
self.text.window_create("end", window=box)
self.text.configure(state="disabled")
def remove_box(self,box):
self.boxes.remove(box)
box.destroy()
self.text.configure(state="normal")
self.text.delete("1.0", "end")
for box in self.boxes:
self.text.window_create("end", window=box)
self.text.configure(state="disabled")
#class to make a title bar for the window instead of the default one with the minimize, maximize, and close buttons
class ScrollableFrame(ttk.Frame):
def __init__(self, container, *args, **kwargs):
super().__init__(container, *args, **kwargs)
#self.pack(fill="both", expand=True)
self.grid(row=0,column=0,sticky="nsew")
s = ttk.Style()
s.configure('new.TFrame', background='#242424',borderwidth=0,highlightthickness=0)
self.configure(style='new.TFrame')
self.canvas = tk.Canvas(self,bg='#242424')
self.canvas.config(bg="#333333",highlightthickness=0,borderwidth=0,highlightbackground="#333333")
self.scrollbar = ctk.CTkScrollbar(
self, orientation="vertical", command=self.canvas.yview,bg_color="#333333",
width=10, corner_radius=10)
#s = ttk.Style()
#s.configure('new.TFrame', background='#242424',borderwidth=0,highlightthickness=0)
self.scrollable_frame = ttk.Frame(self.canvas,style='new.TFrame')
self.scrollable_frame.grid_columnconfigure(0, weight=1)
self.scrollable_frame.grid_columnconfigure(1, weight=1)
#set background color of the scrollable frame
#self.scrollable_frame.config(background="#333333")
self.scrollable_frame.bind("<Configure>",
lambda *args, **kwargs: self.canvas.configure(
scrollregion=self.canvas.bbox("all")))
#resize the scrollable frame to the size of the window capped at 1000x1000
self.scrollable_frame.bind("<Configure>", lambda e: self.canvas.configure(width=min(750, e.width), height=min(750, e.height)))
self.bind_all("<MouseWheel>", self._on_mousewheel)
self.bind("<Destroy>",
lambda *args, **kwargs: self.unbind_all("<MouseWheel>"))
self.canvas.create_window((0, 0), window=self.scrollable_frame, anchor="nw")
self.canvas.configure(yscrollcommand=self.scrollbar.set)
self.canvas.pack(side="left", fill="both", expand=True)
self.scrollbar.pack(side="right", fill="y")
def _on_mousewheel(self, event):
self.canvas.yview_scroll(-1 * round(event.delta / 120), "units")
def update_scroll_region(self):
self.canvas.configure(scrollregion=self.canvas.bbox("all"))
class CreateToolTip(object):
"""
create a tooltip for a given widget
"""
def __init__(self, widget, text='widget info'):
self.waittime = 500 #miliseconds
self.wraplength = 180 #pixels
self.widget = widget
#parent of the widget
#hack to get the master of the app
self.parent = widget.winfo_toplevel()
self.text = text
self.widget.bind("<Enter>", self.enter)
self.widget.bind("<Leave>", self.leave)
self.widget.bind("<ButtonPress>", self.leave)
self.id = None
self.tw = None
def enter(self, event=None):
self.schedule()
def leave(self, event=None):
self.unschedule()
self.hidetip()
def schedule(self):
self.unschedule()
self.id = self.widget.after(self.waittime, self.showtip)
def unschedule(self):
id = self.id
self.id = None
if id:
self.widget.after_cancel(id)
def showtip(self, event=None):
x = y = 0
x, y, cx, cy = self.widget.bbox("insert")
x += self.widget.winfo_rootx() + 50
y += self.widget.winfo_rooty() + 50
# creates a toplevel window
self.tw = ctk.CTkToplevel(self.widget)
#self.tw.wm_attributes("-topmost", 1)
#self.parent.wm_attributes("-topmost", 0)
# Leaves only the label and removes the app window
self.tw.wm_overrideredirect(True)
self.tw.wm_geometry("+%d+%d" % (x, y))
#top most
label = ctk.CTkLabel(self.tw, text=self.text, justify='left',
wraplength = self.wraplength)
label.pack(padx=10, pady=10 )
def hidetip(self):
tw = self.tw
self.tw= None
if tw:
tw.destroy()
class App(ctk.CTk):
def __init__(self):
super().__init__()
try:
latest_git_hash = subprocess.check_output(["git", "ls-remote", "http://github.com/RossM/StableTuner.git","main"], cwd=Path(__file__).resolve().parent).strip().decode()[0:7]
#check if configs folder exists
print("Latest git hash: " + latest_git_hash)
except:
pass
if not os.path.exists("configs"):
os.makedirs("configs")
self.grid_columnconfigure(1, weight=1)
self.grid_columnconfigure((2, 3), weight=0)
self.grid_rowconfigure((0, 1, 2), weight=1)
self.geometry(f"{1100}x{685}")
self.stableTune_icon =PhotoImage(master=self,file = "resources/stableTuner_icon.png")
self.iconphoto(False, self.stableTune_icon)
self.dark_mode_var = "#1e2124"
self.dark_purple_mode_var = "#1B0F1B"
self.dark_mode_title_var = "#7289da"
self.dark_mode_button_pressed_var = "#BB91B6"
self.dark_mode_button_var = "#8ea0e1"
self.dark_mode_text_var = "#c6c7c8"
self.title("StableTuner")
self.configure(cursor="left_ptr")
#resizable window
self.resizable(True, True)
self.create_default_variables()
#check if stableTuner.cfg exists
if not os.path.exists("configs/stableTuner_hash.cfg"):
#create stableTuner.cfg and write the latest git hash
with open("configs/stableTuner_hash.cfg", "w") as f:
f.write(latest_git_hash)
else:
#read stableTuner.cfg
with open("configs/stableTuner_hash.cfg", "r") as f:
old_git_hash = f.read()
try:
#check if the latest git hash is the same as the one in stableTuner.cfg
if latest_git_hash != old_git_hash:
#if not the same, delete the old stableTuner.cfg and create a new one with the latest git hash
self.update_available = True
except:
self.update_available = False
self.sidebar_frame = ctk.CTkFrame(self, width=140, corner_radius=0)
self.sidebar_frame.grid(row=0, column=0, rowspan=10, sticky="nsew")
self.logo_img = ctk.CTkImage(Image.open("resources/stableTuner_logo.png").resize((300, 300), Image.Resampling.LANCZOS),size=(80,80))
self.logo_img = ctk.CTkLabel(self.sidebar_frame, image=self.logo_img, text='', height=50,width=50, font=ctk.CTkFont(size=15, weight="bold"))
self.logo_img.grid(row=0, column=0, padx=20, pady=20)
self.logo_label = ctk.CTkLabel(self.sidebar_frame, text="StableTuner", font=ctk.CTkFont(size=20, weight="bold"))
self.logo_label.place(x=90, y=105, anchor="n")
self.empty_label = ctk.CTkLabel(self.sidebar_frame, text="", font=ctk.CTkFont(size=20, weight="bold"))
self.empty_label.grid(row=1, column=0, padx=0, pady=0)
self.sidebar_button_1 = ctk.CTkButton(self.sidebar_frame,text='General Settings',command=self.general_nav_button_event)
self.sidebar_button_1.grid(row=2, column=0, padx=20, pady=5)
self.sidebar_button_2 = ctk.CTkButton(self.sidebar_frame,text='Trainer Settings',command=self.training_nav_button_event)
self.sidebar_button_2.grid(row=3, column=0, padx=20, pady=5)
self.sidebar_button_3 = ctk.CTkButton(self.sidebar_frame,text='Dataset Settings',command=self.dataset_nav_button_event)
self.sidebar_button_3.grid(row=4, column=0, padx=20, pady=5)
self.sidebar_button_4 = ctk.CTkButton(self.sidebar_frame,text='Sampling Settings',command=self.sampling_nav_button_event)
self.sidebar_button_4.grid(row=5, column=0, padx=20, pady=5)
self.sidebar_button_5 = ctk.CTkButton(self.sidebar_frame,text='Data',command=self.data_nav_button_event)
self.sidebar_button_5.grid(row=6, column=0, padx=20, pady=5)
self.sidebar_button_6 = ctk.CTkButton(self.sidebar_frame,text='Model Playground',command=self.playground_nav_button_event)
self.sidebar_button_6.grid(row=7, column=0, padx=20, pady=5)
self.sidebar_button_7 = ctk.CTkButton(self.sidebar_frame,text='Toolbox',command=self.toolbox_nav_button_event)
self.sidebar_button_7.grid(row=8, column=0, padx=20, pady=5)
#empty label
self.empty_label = ctk.CTkLabel(self.sidebar_frame, text="", font=ctk.CTkFont(size=20, weight="bold"))
self.empty_label.grid(row=9, column=0, padx=0, pady=0)
#empty label
if self.update_available:
self.sidebar_button_11 = ctk.CTkButton(self.sidebar_frame,text='Update Available',fg_color='red',hover_color='darkred',command=self.update_ST)
self.sidebar_button_11.grid(row=12, column=0, padx=20, pady=5)
else:
self.empty_label = ctk.CTkLabel(self.sidebar_frame, text="", font=ctk.CTkFont(size=20, weight="bold"))
self.empty_label.grid(row=10, column=0, padx=0, pady=0)
#empty label
self.empty_label = ctk.CTkLabel(self.sidebar_frame, text="", font=ctk.CTkFont(size=20, weight="bold"))
self.empty_label.grid(row=11, column=0, padx=0, pady=0)
self.sidebar_button_11 = ctk.CTkButton(self.sidebar_frame,text='Caption Buddy',command=self.caption_buddy)
self.sidebar_button_11.grid(row=13, column=0, padx=20, pady=5)
self.sidebar_button_12 = ctk.CTkButton(self.sidebar_frame,text='Start Training!', command=lambda : self.process_inputs(export=False))
self.sidebar_button_12.bind("<Button-3>", self.create_right_click_menu_export)
self.sidebar_button_12.grid(row=14, column=0, padx=20, pady=5)
self.general_frame = ctk.CTkFrame(self, width=140, corner_radius=0,fg_color='transparent')
self.general_frame.grid_columnconfigure(0, weight=5)
self.general_frame.grid_columnconfigure(1, weight=10)
self.general_frame_subframe = ctk.CTkFrame(self.general_frame,width=300, corner_radius=20)
self.general_frame_subframe.grid(row=2, column=0,sticky="nsew", padx=20, pady=20)
self.general_frame_subframe_side_guide = ctk.CTkFrame(self.general_frame,width=250, corner_radius=20)
self.general_frame_subframe_side_guide.grid(row=2, column=1,sticky="nsew", padx=20, pady=20)
self.create_general_settings_widgets()
self.apply_general_style_to_widgets(self.general_frame_subframe)
self.override_general_style_widgets()
self.training_frame_finetune = ctk.CTkFrame(self, width=400, corner_radius=0,fg_color='transparent')
self.training_frame_finetune.grid_columnconfigure(0, weight=1)
self.training_frame_finetune_subframe = ctk.CTkFrame(self.training_frame_finetune,width=400,height=1500, corner_radius=20)
self.training_frame_finetune_subframe.grid_columnconfigure(0, weight=1)
self.training_frame_finetune_subframe.grid_columnconfigure(1, weight=1)
self.training_frame_finetune_subframe.grid(row=2, column=0,sticky="nsew", padx=20, pady=20)
self.create_trainer_settings_widgets()
self.grid_train_settings()
self.apply_general_style_to_widgets(self.training_frame_finetune_subframe)
self.override_training_style_widgets()
self.dataset_frame = ctk.CTkFrame(self, width=140, corner_radius=0,fg_color='transparent')
self.dataset_frame.grid_columnconfigure(0, weight=1)
self.dataset_frame_subframe = ctk.CTkFrame(self.dataset_frame,width=400, corner_radius=20)
self.dataset_frame_subframe.grid(row=2, column=0,sticky="nsew", padx=20, pady=20)
self.create_dataset_settings_widgets()
self.apply_general_style_to_widgets(self.dataset_frame_subframe)
self.sampling_frame = ctk.CTkFrame(self, width=140, corner_radius=0,fg_color='transparent')
self.sampling_frame.grid_columnconfigure(0, weight=1)
self.sampling_frame_subframe = ctk.CTkFrame(self.sampling_frame,width=400, corner_radius=20)
self.sampling_frame_subframe.grid(row=2, column=0,sticky="nsew", padx=20, pady=20)
self.create_sampling_settings_widgets()
self.apply_general_style_to_widgets(self.sampling_frame_subframe)
self.data_frame = ctk.CTkFrame(self, width=140, corner_radius=0,fg_color='transparent')
self.data_frame.grid_columnconfigure(0, weight=1)
self.data_frame_subframe = ctk.CTkFrame(self.data_frame,width=400, corner_radius=20)
self.data_frame_subframe.grid(row=2, column=0,sticky="nsew", padx=20, pady=5)
self.create_data_settings_widgets()
self.apply_general_style_to_widgets(self.data_frame_subframe)
self.data_frame_concepts_subframe = ctk.CTkFrame(self.data_frame,width=400, corner_radius=20)
self.data_frame_concepts_subframe.grid(row=3, column=0,sticky="nsew", padx=20, pady=5)
self.playground_frame = ctk.CTkFrame(self, width=140, corner_radius=0,fg_color='transparent')
self.playground_frame.grid_columnconfigure(0, weight=1)
self.playground_frame_subframe = ctk.CTkFrame(self.playground_frame,width=400, corner_radius=20)
self.playground_frame_subframe.grid(row=2, column=0,sticky="nsew", padx=20, pady=20)
self.playground_frame_subframe.grid_columnconfigure(0, weight=1)
self.playground_frame_subframe.grid_columnconfigure(1, weight=3)
self.playground_frame_subframe.grid_columnconfigure(2, weight=1)
self.create_plyaground_widgets()
self.apply_general_style_to_widgets(self.playground_frame_subframe)
self.override_playground_widgets_style()
self.toolbox_frame = ctk.CTkFrame(self, width=140, corner_radius=0,fg_color='transparent')
self.toolbox_frame.grid_columnconfigure(0, weight=1)
self.toolbox_frame_subframe = ctk.CTkFrame(self.toolbox_frame,width=400, corner_radius=20)
self.toolbox_frame_subframe.grid(row=2, column=0,sticky="nsew", padx=20, pady=20)
self.create_toolbox_widgets()
self.apply_general_style_to_widgets(self.toolbox_frame_subframe)
self.select_frame_by_name('general')
self.update()
if os.path.exists("stabletune_last_run.json"):
try:
self.load_config(file_name="stabletune_last_run.json")
#try loading the latest generated model to playground entry
self.find_latest_generated_model(self.play_model_entry)
#convert to ckpt if option is wanted
if self.execute_post_conversion == True:
#construct unique name
epoch = self.play_model_entry.get().split(os.sep)[-1]
name_of_model = self.play_model_entry.get().split(os.sep)[-2]
res = self.resolution_var.get()
#time and date
#format time and date to %month%day%hour%minute
now = datetime.now()
dt_string = now.strftime("%m-%d-%H-%M")
#construct name
name = name_of_model+'_'+res+"_"+dt_string+"_"+epoch
#print(self.play_model_entry.get())
#if self.play_model_entry.get() is a directory and all required folders exist
if os.path.isdir(self.play_model_entry.get()) and all([os.path.exists(os.path.join(self.play_model_entry.get(), folder)) for folder in self.required_folders]):
#print("all folders exist")
self.convert_to_ckpt(model_path=self.play_model_entry.get(), output_path=self.output_path_entry.get(),name=name)
#self.convert_to_ckpt(model_path=self.play_model_entry.get(), output_path=self.output_path_entry.get(),name=name)
#open stabletune_last_run.json and change convert_to_ckpt_after_training to False
with open("stabletune_last_run.json", "r") as f:
data = json.load(f)
data["execute_post_conversion"] = False
with open("stabletune_last_run.json", "w") as f:
json.dump(data, f, indent=4)
except Exception as e:
print(e)
pass
else:
pass
def create_default_variables(self):
self.possible_resolutions = ["256", "320", "384", "448", "512", "576", "640", "704", "768", "832", "896", "960", "1024","1088", "1152", "1216", "1280", "1344", "1408", "1472", "1536", "1600", "1664", "1728", "1792", "1856", "1920", '1984', '2048']
self.play_current_image = None
self.update_available = False
self.shuffle_dataset_per_epoch = False
self.batch_prompt_sampling_num_prompts = '0'
self.save_safetensors = False
self.attention = 'xformers'
self.attention_types = ['xformers','Flash Attention']
self.model_variant = 'Regular'
self.model_variants = ['Regular', 'Inpaint','Depth2Img']
self.masked_training = False
self.normalize_masked_area_loss = True
self.unmasked_probability = '0%'
self.fallback_mask_prompt = ''
self.max_denoising_strength = '100%'
self.required_folders = ["vae", "unet", "tokenizer", "text_encoder"]
self.aspect_ratio_bucketing_mode = 'Dynamic Fill'
self.dynamic_bucketing_mode = 'Duplicate'
self.play_keep_seed = False
self.use_ema = False
self.clip_penultimate = False
self.conditional_dropout = ''
self.cloud_toggle = False
self.generation_window = None
self.concept_widgets = []
self.sample_prompts = []
self.number_of_sample_prompts = len(self.sample_prompts)
self.sample_prompt_labels = []
self.input_model_path = "stabilityai/stable-diffusion-2-1-base"
self.vae_model_path = ""
self.output_path = "models/new_model"
self.send_telegram_updates = False
self.telegram_token = "TOKEN"
self.telegram_chat_id = "ID"
self.seed_number = 3434554
self.resolution = 512
self.batch_size = 24
self.num_train_epochs = 100
self.accumulation_steps = 1
self.mixed_precision = "fp16"
self.learning_rate = "3e-6"
self.learning_rate_schedule = "constant"
self.learning_rate_warmup_steps = 0
self.concept_list_json_path = "concept_list.json"
self.save_and_sample_every_x_epochs = 5
self.train_text_encoder = True
self.use_8bit_adam = True
self.use_gradient_checkpointing = True
self.num_class_images = 200
self.add_class_images_to_training = False
self.sample_batch_size = 1
self.save_sample_controlled_seed = []
self.delete_checkpoints_when_full_drive = True
self.use_image_names_as_captions = True
self.shuffle_captions = False
self.use_offset_noise = False
self.offset_noise_weight = 0.1
self.use_gan = False
self.gan_weight = 0.05
self.num_samples_to_generate = 1
self.auto_balance_concept_datasets = False
self.sample_width = 512
self.sample_height = 512
#self.save_latents_cache = True
self.regenerate_latents_cache = False
self.use_aspect_ratio_bucketing = True
self.do_not_use_latents_cache = True
self.with_prior_reservation = False
self.prior_loss_weight = 1.0
self.sample_random_aspect_ratio = False
self.add_controlled_seed_to_sample = []
self.sample_on_training_start = True
self.concept_template = {'instance_prompt': 'subject', 'class_prompt': 'a photo of class', 'instance_data_dir':'./data/subject','class_data_dir':'./data/subject_class'}
self.concepts = []
self.play_input_model_path = ""
self.play_postive_prompt = ""
self.play_negative_prompt = ""
self.play_seed = -1
self.play_num_samples = 1
self.play_sample_width = 512
self.play_sample_height = 512
self.play_cfg = 7.5
self.play_steps = 25
self.schedulers = ["DPMSolverMultistepScheduler", "PNDMScheduler", 'DDIMScheduler','EulerAncestralDiscreteScheduler','EulerDiscreteScheduler']
self.quick_select_models = ["Stable Diffusion 1.4", "Stable Diffusion 1.5", "Stable Diffusion 1.5 Inpaint", "Stable Diffusion 2 Base (512)", "Stable Diffusion 2 (768)", 'Stable Diffusion 2 Inpaint','Stable Diffusion 2 Depth2Img', 'Stable Diffusion 2.1 Base (512)', "Stable Diffusion 2.1 (768)"]
self.play_scheduler = 'DPMSolverMultistepScheduler'
self.pipe = None
self.current_model = None
self.play_save_image_button = None
self.dataset_repeats = 1
self.limit_text_encoder = 0
self.use_text_files_as_captions = True
self.ckpt_sd_version = None
self.convert_to_ckpt_after_training = False
self.execute_post_conversion = False
self.preview_images = []
self.disable_cudnn_benchmark = True
self.sample_step_interval = 500
self.use_lion = False
def select_frame_by_name(self, name):
# set button color for selected button
self.sidebar_button_1.configure(fg_color=("gray75", "gray25") if name == "general" else "transparent")
self.sidebar_button_2.configure(fg_color=("gray75", "gray25") if name == "training" else "transparent")
self.sidebar_button_3.configure(fg_color=("gray75", "gray25") if name == "dataset" else "transparent")
self.sidebar_button_4.configure(fg_color=("gray75", "gray25") if name == "sampling" else "transparent")
self.sidebar_button_5.configure(fg_color=("gray75", "gray25") if name == "data" else "transparent")
self.sidebar_button_6.configure(fg_color=("gray75", "gray25") if name == "playground" else "transparent")
self.sidebar_button_7.configure(fg_color=("gray75", "gray25") if name == "toolbox" else "transparent")
# show selected frame
if name == "general":
self.general_frame.grid(row=0, column=1, sticky="nsew")
else:
self.general_frame.grid_forget()
if name == "training":
self.training_frame_finetune.grid(row=0, column=1, sticky="nsew")
else:
self.training_frame_finetune.grid_forget()
if name == "dataset":
self.dataset_frame.grid(row=0, column=1, sticky="nsew")
else:
self.dataset_frame.grid_forget()
if name == "sampling":
self.sampling_frame.grid(row=0, column=1, sticky="nsew")
else:
self.sampling_frame.grid_forget()
if name == "data":
self.data_frame.grid(row=0, column=1, sticky="nsew")
else:
self.data_frame.grid_forget()
if name == "playground":
self.playground_frame.grid(row=0, column=1, sticky="nsew")
else:
self.playground_frame.grid_forget()
if name == "toolbox":
self.toolbox_frame.grid(row=0, column=1, sticky="nsew")
else:
self.toolbox_frame.grid_forget()
def general_nav_button_event(self):
self.select_frame_by_name("general")
def training_nav_button_event(self):
self.select_frame_by_name("training")
def dataset_nav_button_event(self):
self.select_frame_by_name("dataset")
def sampling_nav_button_event(self):
self.select_frame_by_name("sampling")
def data_nav_button_event(self):
self.select_frame_by_name("data")
def playground_nav_button_event(self):
self.select_frame_by_name("playground")
def toolbox_nav_button_event(self):
self.select_frame_by_name("toolbox")
#create a right click menu for entry widgets
def create_right_click_menu(self, event):
#create a menu
self.menu = Menu(self.master, tearoff=0)
self.menu.config(font=("Segoe UI", 15))
#set dark colors for the menu
self.menu.configure(bg="#2d2d2d", fg="#ffffff", activebackground="#2d2d2d", activeforeground="#ffffff")
#add commands to the menu
self.menu.add_command(label="Cut", command=lambda: self.focus_get().event_generate("<<Cut>>"))
self.menu.add_command(label="Copy", command=lambda: self.focus_get().event_generate("<<Copy>>"))
self.menu.add_command(label="Paste", command=lambda: self.focus_get().event_generate("<<Paste>>"))
self.menu.add_command(label="Select All", command=lambda: self.focus_get().event_generate("<<SelectAll>>"))
#display the menu
try:
self.menu.tk_popup(event.x_root, event.y_root)
finally:
#make sure to release the grab (Tk 8.0a1 only)
self.menu.grab_release()
def create_right_click_menu_export(self, event):
#create a menu
self.menu = Menu(self.master, tearoff=0)
#set menu size and font size
self.menu.config(font=("Segoe UI", 15))
#set dark colors for the menu
self.menu.configure(bg="#2d2d2d", fg="#ffffff", activebackground="#2d2d2d", activeforeground="#ffffff")
#add commands to the menu
self.menu.add_command(label="Export Trainer Command for Windows", command=lambda: self.process_inputs(export='Win'))
self.menu.add_command(label="Copy Trainer Command for Linux", command=lambda: self.process_inputs(export='LinuxCMD'))
#display the menu
try:
self.menu.tk_popup(event.x_root, event.y_root)
finally:
#make sure to release the grab (Tk 8.0a1 only)
self.menu.grab_release()
def create_left_click_menu_config(self, event):
#create a menu
self.menu = Menu(self.master, tearoff=0)
#set menu size and font size
self.menu.config(font=("Segoe UI", 15))
#set dark colors for the menu
self.menu.configure(bg="#2d2d2d", fg="#ffffff", activebackground="#2d2d2d", activeforeground="#ffffff")
#add commands to the menu
self.menu.add_command(label="Load Config", command=self.load_config)
self.menu.add_command(label="Save Config", command=self.save_config)
#display the menu
try:
self.menu.tk_popup(event.x_root, event.y_root)
finally:
#make sure to release the grab (Tk 8.0a1 only)
self.menu.grab_release()
def quick_select_model(self,*args):
val = self.quick_select_var.get()
if val != "Click to select model":
#clear input_model_path_entry
self.input_model_path_entry.delete(0, tk.END)
if val == 'Stable Diffusion 1.4':
self.input_model_path_entry.insert(0,"CompVis/stable-diffusion-v1-4")
self.model_variant_var.set("Regular")
elif val == 'Stable Diffusion 1.5':
self.input_model_path_entry.insert(0,"runwayml/stable-diffusion-v1-5")
self.model_variant_var.set("Regular")
elif val == 'Stable Diffusion 1.5 Inpaint':
self.input_model_path_entry.insert(0,"runwayml/stable-diffusion-inpainting")
self.model_variant_var.set("Inpaint")
elif val == 'Stable Diffusion 2 Base (512)':
self.input_model_path_entry.insert(0,"stabilityai/stable-diffusion-2-base")
self.model_variant_var.set("Regular")
elif val == 'Stable Diffusion 2 (768)':
self.input_model_path_entry.insert(0,"stabilityai/stable-diffusion-2")
self.resolution_var.set("768")
self.sample_height_entry.delete(0, tk.END)
self.sample_height_entry.insert(0,"768")
self.sample_width_entry.delete(0, tk.END)
self.sample_width_entry.insert(0,"768")
self.model_variant_var.set("Regular")
elif val == 'Stable Diffusion 2 Inpaint':
self.input_model_path_entry.insert(0,"stabilityai/stable-diffusion-2-inpainting")
self.model_variant_var.set("Inpaint")
elif val == 'Stable Diffusion 2 Depth2Img':
self.input_model_path_entry.insert(0,"stabilityai/stable-diffusion-2-depth")
self.model_variant_var.set("Depth2Img")
elif val == 'Stable Diffusion 2.1 Base (512)':
self.input_model_path_entry.insert(0,"stabilityai/stable-diffusion-2-1-base")
self.model_variant_var.set("Regular")
elif val == 'Stable Diffusion 2.1 (768)':
self.input_model_path_entry.insert(0,"stabilityai/stable-diffusion-2-1")
self.resolution_var.set("768")
self.sample_height_entry.delete(0, tk.END)
self.sample_height_entry.insert(0,"768")
self.sample_width_entry.delete(0, tk.END)
self.sample_width_entry.insert(0,"768")
self.model_variant_var.set("Regular")
def override_training_style_widgets(self):
for i in self.training_frame_finetune_subframe.children.values():
if 'ctkbutton' in str(i):
i.grid(padx=5, pady=5,sticky="w")
if 'ctkoptionmenu' in str(i):
i.grid(padx=10, pady=5,sticky="w")
if 'ctkentry' in str(i):
i.configure(width=160)
i.grid(padx=10, pady=5,sticky="w")
i.bind("<Button-3>", self.create_right_click_menu)
if 'ctkswitch' in str(i):
i.configure(text='')
i.grid(padx=10, pady=5,sticky="")
if 'ctklabel' in str(i):
i.grid(padx=10, pady=5,sticky="w")
def override_playground_widgets_style(self):
self.playground_title.grid(row=0, column=0, padx=20, pady=20)
self.play_model_label.grid(row=0, column=0, sticky="nsew")
self.play_model_entry.grid(row=0, column=1, sticky="nsew")
self.play_prompt_label.grid(row=1, column=0, sticky="nsew")
self.play_prompt_entry.grid(row=1, column=1,columnspan=2, sticky="nsew")
self.play_negative_prompt_label.grid(row=2, column=0, sticky="nsew")
self.play_negative_prompt_entry.grid(row=2, column=1,columnspan=2, sticky="nsew")
self.play_seed_label.grid(row=3, column=0, sticky="nsew")
self.play_seed_entry.grid(row=3, column=1, sticky="w")
self.play_keep_seed_checkbox.grid(row=3, column=1)
self.play_steps_label.grid(row=4, column=0, sticky="nsew")
self.play_steps_slider.grid(row=4, column=1, sticky="nsew")
self.play_scheduler_label.grid(row=5, column=0, sticky="nsew")
self.play_scheduler_option_menu.grid(row=5, column=1, sticky="nsew")
self.play_resolution_label.grid(row=6,rowspan=2, column=0, sticky="nsew")
self.play_resolution_label_height.grid(row=6, column=1, sticky="w")
self.play_resolution_label_width.grid(row=6, column=1, sticky="e")
self.play_resolution_slider_height.grid(row=7, column=1, sticky="w")
self.play_resolution_slider_width.grid(row=7, column=1, sticky="e")
self.play_resolution_slider_height.set(self.play_sample_height)
self.play_cfg_label.grid(row=8, column=0, sticky="nsew")
self.play_cfg_slider.grid(row=8, column=1, sticky="nsew")
self.play_toolbox_label.grid(row=9, column=0, sticky="nsew")
self.play_generate_image_button.grid(row=10, column=0, columnspan=2, sticky="nsew")
self.play_convert_to_ckpt_button.grid(row=9, column=1, columnspan=1, sticky="w")
def override_general_style_widgets(self):
pass
def apply_general_style_to_widgets(self,frame):
for i in frame.children.values():
if 'ctkbutton' in str(i):
i.grid(padx=5, pady=10,sticky="w")
if 'ctkoptionmenu' in str(i):
i.grid(padx=10, pady=10,sticky="w")
if 'ctkentry' in str(i):
i.configure(width=160)
i.grid(padx=10, pady=5,sticky="w")
i.bind("<Button-3>", self.create_right_click_menu)
if 'ctkswitch' in str(i):
i.configure(text='')
i.grid(padx=10, pady=10,sticky="")
if 'ctklabel' in str(i):
i.grid(padx=10,sticky="w")
def grid_train_settings(self):
#define grid row and column
self.training_frame_finetune_subframe.grid_columnconfigure(0, weight=2)
self.training_frame_finetune_subframe.grid_columnconfigure(1, weight=1)
self.training_frame_finetune_subframe.grid_columnconfigure(2, weight=2)
self.training_frame_finetune_subframe.grid_columnconfigure(3, weight=1)
rows = 14
columns = 4
widgets = self.training_frame_finetune_subframe.children.values()
#organize widgets in grid
curRow = 0
curColumn = 0
#make widgets a list
widgets = list(widgets)[1:]
#find ctkcanvas in widgets and remove it
for i in widgets:
if 'ctkcanvas' in str(i):
widgets.remove(i)
#create pairs of widgets
pairs = []
for i in range(0,len(widgets),2):
pairs.append([widgets[i],widgets[i+1]])
for p in pairs:
p[0].grid(row=curRow, column=curColumn, sticky="w",padx=1,pady=1)
p[1].grid(row=curRow, column=curColumn+1, sticky="w",padx=1,pady=1)
curRow += 1
if curRow == rows:
curRow = 0
curColumn += 2
def dreambooth_mode(self):
try:
if self.dreambooth_mode_selected:
self.dreambooth_mode_selected.destroy()
except:
pass
try:
if self.fine_tune_mode_selected:
self.fine_tune_mode_selected.destroy()
#re-enable previous disabled widgets
self.with_prior_loss_preservation_checkbox.configure(state='normal')
self.with_prior_loss_preservation_label.configure(state='normal')
self.prior_loss_preservation_weight_entry.configure(state='normal')
self.prior_loss_preservation_weight_label.configure(state='normal')
self.with_prior_loss_preservation_var.set(1)
except:
pass
self.dreambooth_mode_selected = ctk.CTkLabel(self.general_frame_subframe_side_guide,fg_color='transparent', text="Dreambooth it is!\n I disabled irrelevant features for you.", font=ctk.CTkFont(size=14))
self.dreambooth_mode_selected.pack(side="top", fill="x", expand=False, padx=10, pady=10)
self.use_text_files_as_captions_checkbox.configure(state='disabled')
self.use_text_files_as_captions_label.configure(state='disabled')
self.use_text_files_as_captions_var.set(0)
#self.use_text_files_as_captions_checkbox.set(0)
self.use_image_names_as_captions_label.configure(state='disabled')
self.use_image_names_as_captions_checkbox.configure(state='disabled')
self.use_image_names_as_captions_var.set(0)
#self.use_image_names_as_captions_checkbox.set(0)
self.shuffle_captions_label.configure(state='disabled')
self.shuffle_captions_checkbox.configure(state='disabled')
self.shuffle_captions_var.set(0)
#self.shuffle_captions_checkbox.set(0)
self.add_class_images_to_dataset_checkbox.configure(state='disabled')
self.add_class_images_to_dataset_label.configure(state='disabled')
self.add_class_images_to_dataset_var.set(0)
#self.add_class_images_to_dataset_checkbox.set(0)
pass
def fine_tune_mode(self):
try:
if self.dreambooth_mode_selected:
self.dreambooth_mode_selected.destroy()
#re-enable checkboxes
self.use_text_files_as_captions_checkbox.configure(state='normal')
self.use_text_files_as_captions_label.configure(state='normal')
self.use_image_names_as_captions_label.configure(state='normal')
self.use_image_names_as_captions_checkbox.configure(state='normal')
self.shuffle_captions_label.configure(state='normal')
self.shuffle_captions_checkbox.configure(state='normal')
self.add_class_images_to_dataset_checkbox.configure(state='normal')
self.add_class_images_to_dataset_label.configure(state='normal')
self.use_text_files_as_captions_var.set(1)
self.use_image_names_as_captions_var.set(1)
self.shuffle_captions_var.set(0)
self.add_class_images_to_dataset_var.set(0)
except:
pass
try:
if self.fine_tune_mode_selected:
self.fine_tune_mode_selected.destroy()
except:
pass
self.fine_tune_mode_selected = ctk.CTkLabel(self.general_frame_subframe_side_guide,fg_color='transparent', text="Let's Fine-Tune!\n I disabled irrelevant features for you.", font=ctk.CTkFont(size=14))
self.fine_tune_mode_selected.pack(side="top", fill="x", expand=False, padx=10, pady=10)
self.with_prior_loss_preservation_checkbox.configure(state='disabled')
self.with_prior_loss_preservation_label.configure(state='disabled')
#self.with_prior_loss_preservation_checkbox.set(0)
self.prior_loss_preservation_weight_label.configure(state='disabled')
self.prior_loss_preservation_weight_entry.configure(state='disabled')
self.with_prior_loss_preservation_var.set(0)
#self.prior_loss_preservation_weight_entry.set(1.0)
pass
'''
def lora_mode(self):
self.lora_mode_selected = ctk.CTkLabel(self.general_frame_subframe_side_guide,fg_color='transparent', text="Lora it is!\n I disabled irrelevant features for you.", font=ctk.CTkFont(size=14))
self.lora_mode_selected.pack(side="top", fill="x", expand=False, padx=10, pady=10)
pass
'''
def create_general_settings_widgets(self):
self.general_frame_title = ctk.CTkLabel(self.general_frame, text="General Settings", font=ctk.CTkFont(size=20, weight="bold"))
self.general_frame_title.grid(row=0, column=0,columnspan=2, padx=20, pady=20)
#self.tip_label = ctk.CTkLabel(self.general_frame, text="Tip: Hover over settings for information", font=ctk.CTkFont(size=14))
#self.tip_label.grid(row=1, column=0, sticky="nsew")
self.general_frame_sidebar_title = ctk.CTkLabel(self.general_frame_subframe_side_guide,fg_color='transparent', text="Welcome!", font=ctk.CTkFont(size=20, weight="bold"))
#self.general_frame_sidebar_title.grid(row=0, column=0, sticky="nsew")
self.general_frame_sidebar_title.pack(side="top", fill="x", expand=False, padx=10, pady=10)
#text
self.general_frame_sidebar_text = ctk.CTkLabel(self.general_frame_subframe_side_guide,fg_color='transparent', text="Welcome To StableTuner\nHow do you want to train today?", font=ctk.CTkFont(size=14))
self.general_frame_sidebar_text.pack(side="top", fill="x", expand=False, padx=10, pady=10)
#add dreambooth button
self.dreambooth_button = ctk.CTkButton(self.general_frame_subframe_side_guide, text="Dreambooth", command=self.dreambooth_mode)
self.dreambooth_button.pack(side="top", fill="x", expand=False, padx=10, pady=10)
#add fine-tune button
self.fine_tune_button = ctk.CTkButton(self.general_frame_subframe_side_guide, text="Fine-Tune", command=self.fine_tune_mode)
self.fine_tune_button.pack(side="top", fill="x", expand=False, padx=10, pady=10)
#add LORA button with disabled state
#self.lora_button = ctk.CTkButton(self.general_frame_subframe_side_guide, text="LORA", command=self.lora_mode, state="disabled")
#self.lora_button.pack(side="top", fill="x", expand=False, padx=10, pady=10)
self.quick_select_var = tk.StringVar(self.master)
self.quick_select_var.set('Quick Select Base Model')
self.quick_select_dropdown = ctk.CTkOptionMenu(self.general_frame_subframe, variable=self.quick_select_var, values=self.quick_select_models, command=self.quick_select_model,dynamic_resizing=False, width=200)
self.quick_select_dropdown.grid(row=0, column=0, sticky="nsew")
self.load_config_button = ctk.CTkButton(self.general_frame_subframe, text="Load/Save Config")
#bind the load config button to a function
self.load_config_button.bind("<Button-1>", lambda event: self.create_left_click_menu_config(event))
self.load_config_button.grid(row=0, column=1, sticky="nsew")
#create another button to resume from latest checkpoint
self.input_model_path_resume_button = ctk.CTkButton(self.general_frame_subframe, text="Resume From Last Session",width=50, command=lambda : self.find_latest_generated_model(self.input_model_path_entry))
self.input_model_path_resume_button.grid(row=0, column=2, sticky="nsew")
self.input_model_path_label = ctk.CTkLabel(self.general_frame_subframe, text="Input Model / HuggingFace Repo")
input_model_path_label_ttp = CreateToolTip(self.input_model_path_label, "The path to the diffusers model to use. Can be a local path or a HuggingFace repo path.")
self.input_model_path_label.grid(row=1, column=0, sticky="nsew")
self.input_model_path_entry = ctk.CTkEntry(self.general_frame_subframe,width=30)
self.input_model_path_entry.grid(row=1, column=1, sticky="nsew")
self.input_model_path_entry.insert(0, self.input_model_path)
#make a button to open a file dialog
self.input_model_path_button = ctk.CTkButton(self.general_frame_subframe,width=30, text="...", command=self.choose_model)
self.input_model_path_button.grid(row=1, column=2, sticky="w")
self.vae_model_path_label = ctk.CTkLabel(self.general_frame_subframe, text="VAE model path / HuggingFace Repo")
vae_model_path_label_ttp = CreateToolTip(self.vae_model_path_label, "OPTINAL The path to the VAE model to use. Can be a local path or a HuggingFace repo path.")
self.vae_model_path_label.grid(row=2, column=0, sticky="nsew")
self.vae_model_path_entry = ctk.CTkEntry(self.general_frame_subframe)
self.vae_model_path_entry.grid(row=2, column=1, sticky="nsew")
self.vae_model_path_entry.insert(0, self.vae_model_path)
#make a button to open a file dialog
self.vae_model_path_button = ctk.CTkButton(self.general_frame_subframe,width=30, text="...", command=lambda: self.open_file_dialog(self.vae_model_path_entry))
self.vae_model_path_button.grid(row=2, column=2, sticky="w")
self.output_path_label = ctk.CTkLabel(self.general_frame_subframe, text="Output Path")
output_path_label_ttp = CreateToolTip(self.output_path_label, "The path to the output directory. If it doesn't exist, it will be created.")
self.output_path_label.grid(row=3, column=0, sticky="nsew")
self.output_path_entry = ctk.CTkEntry(self.general_frame_subframe)
self.output_path_entry.grid(row=3, column=1, sticky="nsew")
self.output_path_entry.insert(0, self.output_path)
#make a button to open a file dialog
self.output_path_button = ctk.CTkButton(self.general_frame_subframe,width=30, text="...", command=lambda: self.open_file_dialog(self.output_path_entry))
self.output_path_button.grid(row=3, column=2, sticky="w")
self.convert_to_ckpt_after_training_label = ctk.CTkLabel(self.general_frame_subframe, text="Convert to CKPT after training?")
convert_to_ckpt_label_ttp = CreateToolTip(self.convert_to_ckpt_after_training_label, "Convert the model to a tensorflow checkpoint after training.")
self.convert_to_ckpt_after_training_label.grid(row=4, column=0, sticky="nsew")
self.convert_to_ckpt_after_training_var = tk.IntVar()
self.convert_to_ckpt_after_training_checkbox = ctk.CTkSwitch(self.general_frame_subframe,text='',variable=self.convert_to_ckpt_after_training_var)
self.convert_to_ckpt_after_training_checkbox.grid(row=4, column=1, sticky="nsew",padx=10)
#use telegram updates dark mode
self.send_telegram_updates_label = ctk.CTkLabel(self.general_frame_subframe, text="Send Telegram Updates")
send_telegram_updates_label_ttp = CreateToolTip(self.send_telegram_updates_label, "Use Telegram updates to monitor training progress, must have a Telegram bot set up.")
self.send_telegram_updates_label.grid(row=6, column=0, sticky="nsew")
#create checkbox to toggle telegram updates and show telegram token and chat id
self.send_telegram_updates_var = tk.IntVar()
self.send_telegram_updates_checkbox = ctk.CTkSwitch(self.general_frame_subframe,variable=self.send_telegram_updates_var, command=self.toggle_telegram_settings)
self.send_telegram_updates_checkbox.grid(row=6, column=1, sticky="nsew")
#create telegram token dark mode
self.telegram_token_label = ctk.CTkLabel(self.general_frame_subframe, text="Telegram Token", state="disabled")
telegram_token_label_ttp = CreateToolTip(self.telegram_token_label, "The Telegram token for your bot.")
self.telegram_token_label.grid(row=7, column=0, sticky="nsew")
self.telegram_token_entry = ctk.CTkEntry(self.general_frame_subframe, state="disabled")
self.telegram_token_entry.grid(row=7, column=1,columnspan=3, sticky="nsew")
self.telegram_token_entry.insert(0, self.telegram_token)
#create telegram chat id dark mode
self.telegram_chat_id_label = ctk.CTkLabel(self.general_frame_subframe, text="Telegram Chat ID", state="disabled")
telegram_chat_id_label_ttp = CreateToolTip(self.telegram_chat_id_label, "The Telegram chat ID to send updates to.")
self.telegram_chat_id_label.grid(row=8, column=0, sticky="nsew")
self.telegram_chat_id_entry = ctk.CTkEntry(self.general_frame_subframe, state="disabled")
self.telegram_chat_id_entry.grid(row=8, column=1,columnspan=3, sticky="nsew")
self.telegram_chat_id_entry.insert(0, self.telegram_chat_id)
#add a switch to toggle runpod mode
self.cloud_mode_label = ctk.CTkLabel(self.general_frame_subframe, text="Cloud Training Export")
cloud_mode_label_ttp = CreateToolTip(self.cloud_mode_label, "Cloud mode will package up a quick trainer session for RunPod/Colab etc.")
self.cloud_mode_label.grid(row=9, column=0, sticky="nsew")
self.cloud_mode_var = tk.IntVar()
self.cloud_mode_checkbox = ctk.CTkSwitch(self.general_frame_subframe,variable=self.cloud_mode_var, command=self.toggle_runpod_mode)
self.cloud_mode_checkbox.grid(row=9, column=1, sticky="nsew")
def toggle_runpod_mode(self):
toggle = self.cloud_mode_var.get()
#flip self.toggle
if toggle == True:
toggle = False
self.sidebar_button_12.configure(text='Export for Cloud!')
else:
toggle = True
self.sidebar_button_12.configure(text='Start Training!')
def create_trainer_settings_widgets(self):
self.training_frame_finetune_title = ctk.CTkLabel(self.training_frame_finetune, text="Training Settings", font=ctk.CTkFont(size=20, weight="bold"))
self.training_frame_finetune_title.grid(row=0, column=0, padx=20, pady=20)
#add a model variant dropdown
self.model_variant_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Model Variant")
model_variant_label_ttp = CreateToolTip(self.model_variant_label, "The model type you're training.")
self.model_variant_label.grid(row=0, column=0, sticky="nsew")
self.model_variant_var = tk.StringVar()
self.model_variant_var.set(self.model_variant)
self.model_variant_dropdown = ctk.CTkOptionMenu(self.training_frame_finetune_subframe, values=self.model_variants, variable=self.model_variant_var)
#add attention optionMenu
self.attention_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Attention")
attention_label_ttp = CreateToolTip(self.attention_label, "The attention type to use. Flash Attention may enable lower VRAM training but Xformers will be faster and better for bigger batch sizes.")
self.attention_label.grid(row=1, column=0, sticky="nsew")
self.attention_var = tk.StringVar()
self.attention_var.set(self.attention)
self.attention_dropdown = ctk.CTkOptionMenu(self.training_frame_finetune_subframe, values=self.attention_types, variable=self.attention_var)
#add a batch size entry
#add a seed entry
self.seed_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Seed")
seed_label_ttp = CreateToolTip(self.seed_label, "The seed to use for training.")
#self.seed_label.grid(row=1, column=0, sticky="nsew")
self.seed_entry = ctk.CTkEntry(self.training_frame_finetune_subframe)
#self.seed_entry.grid(row=1, column=1, sticky="nsew")
self.seed_entry.insert(0, self.seed_number)
#create resolution dark mode dropdown
self.resolution_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Resolution")
resolution_label_ttp = CreateToolTip(self.resolution_label, "The resolution of the images to train on.")
#self.resolution_label.grid(row=2, column=0, sticky="nsew")
self.resolution_var = tk.StringVar()
self.resolution_var.set(self.resolution)
self.resolution_dropdown = ctk.CTkOptionMenu(self.training_frame_finetune_subframe, variable=self.resolution_var, values=self.possible_resolutions)
#self.resolution_dropdown.grid(row=2, column=1, sticky="nsew")
#create train batch size dark mode dropdown with values from 1 to 60
self.train_batch_size_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Train Batch Size")
train_batch_size_label_ttp = CreateToolTip(self.train_batch_size_label, "The batch size to use for training.")
#self.train_batch_size_label.grid(row=3, column=0, sticky="nsew")
self.train_batch_size_var = tk.StringVar()
self.train_batch_size_var.set(self.batch_size)
#make a list of values from 1 to 60 that are strings
#train_batch_size_values =
self.train_batch_size_dropdown = ctk.CTkOptionMenu(self.training_frame_finetune_subframe, variable=self.train_batch_size_var, values=[str(i) for i in range(1,61)])
#self.train_batch_size_dropdown.grid(row=3, column=1, sticky="nsew")
#create train epochs dark mode
self.train_epochs_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Train Epochs")
train_epochs_label_ttp = CreateToolTip(self.train_epochs_label, "The number of epochs to train for. An epoch is one pass through the entire dataset.")
#self.train_epochs_label.grid(row=4, column=0, sticky="nsew")
self.train_epochs_entry = ctk.CTkEntry(self.training_frame_finetune_subframe)
#self.train_epochs_entry.grid(row=4, column=1, sticky="nsew")
self.train_epochs_entry.insert(0, self.num_train_epochs)
#create mixed precision dark mode dropdown
self.mixed_precision_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Mixed Precision")
mixed_precision_label_ttp = CreateToolTip(self.mixed_precision_label, "Use mixed precision training to speed up training, FP16 is recommended but requires a GPU with Tensor Cores. TF32 is recommended for RTX 30 series GPUs and newer.")
#self.mixed_precision_label.grid(row=5, column=0, sticky="nsew")
self.mixed_precision_var = tk.StringVar()
self.mixed_precision_var.set(self.mixed_precision)
self.mixed_precision_dropdown = ctk.CTkOptionMenu(self.training_frame_finetune_subframe, variable=self.mixed_precision_var,values=["bf16","fp16","fp32","tf32"])
#self.mixed_precision_dropdown.grid(row=5, column=1, sticky="nsew")
#create use 8bit adam checkbox
self.use_8bit_adam_var = tk.IntVar()
self.use_8bit_adam_var.set(self.use_8bit_adam)
#create label
self.use_8bit_adam_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Use 8bit Adam")
use_8bit_adam_label_ttp = CreateToolTip(self.use_8bit_adam_label, "Use 8bit Adam to speed up training, requires bytsandbytes.")
#self.use_8bit_adam_label.grid(row=6, column=0, sticky="nsew")
#create checkbox
self.use_8bit_adam_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.use_8bit_adam_var,text='')
#create use LION optimizer checkbox
self.use_lion_var = tk.IntVar()
self.use_lion_var.set(self.use_lion)
#create label
self.use_lion_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Use LION")
use_lion_label_ttp = CreateToolTip(self.use_lion_label, "Use LION optimizer to speed up training, requires triton.")
#self.use_lion_label.grid(row=7, column=0, sticky="nsew")
#create checkbox
self.use_lion_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.use_lion_var,text='Use LION Optimizer')
#self.use_8bit_adam_checkbox.grid(row=6, column=1, sticky="nsew")
#create use gradient checkpointing checkbox
self.use_gradient_checkpointing_var = tk.IntVar()
self.use_gradient_checkpointing_var.set(self.use_gradient_checkpointing)
#create label
self.use_gradient_checkpointing_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Use Gradient Checkpointing")
use_gradient_checkpointing_label_ttp = CreateToolTip(self.use_gradient_checkpointing_label, "Use gradient checkpointing to reduce RAM usage.")
#self.use_gradient_checkpointing_label.grid(row=7, column=0, sticky="nsew")
#create checkbox
self.use_gradient_checkpointing_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.use_gradient_checkpointing_var)
#self.use_gradient_checkpointing_checkbox.grid(row=7, column=1, sticky="nsew")
#create gradient accumulation steps dark mode dropdown with values from 1 to 60
self.gradient_accumulation_steps_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Gradient Accumulation Steps")
gradient_accumulation_steps_label_ttp = CreateToolTip(self.gradient_accumulation_steps_label, "The number of gradient accumulation steps to use, this is useful for training with limited GPU memory.")
#self.gradient_accumulation_steps_label.grid(row=8, column=0, sticky="nsew")
self.gradient_accumulation_steps_var = tk.StringVar()
self.gradient_accumulation_steps_var.set(self.accumulation_steps)
self.gradient_accumulation_steps_dropdown = ctk.CTkOptionMenu(self.training_frame_finetune_subframe, variable=self.gradient_accumulation_steps_var, values=['1','2','3','4','5','6','7','8','9','10'])
#self.gradient_accumulation_steps_dropdown.grid(row=8, column=1, sticky="nsew")
#create learning rate dark mode entry
self.learning_rate_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Learning Rate")
learning_rate_label_ttp = CreateToolTip(self.learning_rate_label, "The learning rate to use for training.")
#self.learning_rate_label.grid(row=9, column=0, sticky="nsew")
self.learning_rate_entry = ctk.CTkEntry(self.training_frame_finetune_subframe)
#self.learning_rate_entry.grid(row=9, column=1, sticky="nsew")
self.learning_rate_entry.insert(0, self.learning_rate)
#create learning rate scheduler dropdown
self.learning_rate_scheduler_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Learning Rate Scheduler")
learning_rate_scheduler_label_ttp = CreateToolTip(self.learning_rate_scheduler_label, "The learning rate scheduler to use for training.")
#self.learning_rate_scheduler_label.grid(row=10, column=0, sticky="nsew")
self.learning_rate_scheduler_var = tk.StringVar()
self.learning_rate_scheduler_var.set(self.learning_rate_schedule)
self.learning_rate_scheduler_dropdown = ctk.CTkOptionMenu(self.training_frame_finetune_subframe, variable=self.learning_rate_scheduler_var, values=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"])
#self.learning_rate_scheduler_dropdown.grid(row=10, column=1, sticky="nsew")
#create num warmup steps dark mode entry
self.num_warmup_steps_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="LR Warmup Steps")
num_warmup_steps_label_ttp = CreateToolTip(self.num_warmup_steps_label, "The number of warmup steps to use for the learning rate scheduler.")
#self.num_warmup_steps_label.grid(row=11, column=0, sticky="nsew")
self.num_warmup_steps_entry = ctk.CTkEntry(self.training_frame_finetune_subframe)
#self.num_warmup_steps_entry.grid(row=11, column=1, sticky="nsew")
self.num_warmup_steps_entry.insert(0, self.learning_rate_warmup_steps)
#create use latent cache checkbox
#self.use_latent_cache_var = tk.IntVar()
#self.use_latent_cache_var.set(self.do_not_use_latents_cache)
#create label
#self.use_latent_cache_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Use Latent Cache")
#use_latent_cache_label_ttp = CreateToolTip(self.use_latent_cache_label, "Cache the latents to speed up training.")
#self.use_latent_cache_label.grid(row=12, column=0, sticky="nsew")
#create checkbox
#self.use_latent_cache_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.use_latent_cache_var)
#self.use_latent_cache_checkbox.grid(row=12, column=1, sticky="nsew")
#create save latent cache checkbox
#self.save_latent_cache_var = tk.IntVar()
#self.save_latent_cache_var.set(self.save_latents_cache)
#create label
#self.save_latent_cache_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Save Latent Cache")
#save_latent_cache_label_ttp = CreateToolTip(self.save_latent_cache_label, "Save the latents cache to disk after generation, will be remade if batch size changes.")
#self.save_latent_cache_label.grid(row=13, column=0, sticky="nsew")
#create checkbox
#self.save_latent_cache_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.save_latent_cache_var)
#self.save_latent_cache_checkbox.grid(row=13, column=1, sticky="nsew")
#create regnerate latent cache checkbox
self.regenerate_latent_cache_var = tk.IntVar()
self.regenerate_latent_cache_var.set(self.regenerate_latents_cache)
#create label
self.regenerate_latent_cache_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Regenerate Latent Cache")
regenerate_latent_cache_label_ttp = CreateToolTip(self.regenerate_latent_cache_label, "Force the latents cache to be regenerated.")
#self.regenerate_latent_cache_label.grid(row=14, column=0, sticky="nsew")
#create checkbox
self.regenerate_latent_cache_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.regenerate_latent_cache_var)
#self.regenerate_latent_cache_checkbox.grid(row=14, column=1, sticky="nsew")
#create train text encoder checkbox
self.train_text_encoder_var = tk.IntVar()
self.train_text_encoder_var.set(self.train_text_encoder)
#create label
self.train_text_encoder_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Train Text Encoder")
train_text_encoder_label_ttp = CreateToolTip(self.train_text_encoder_label, "Train the text encoder along with the UNET.")
#self.train_text_encoder_label.grid(row=15, column=0, sticky="nsew")
#create checkbox
self.train_text_encoder_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.train_text_encoder_var)
#self.train_text_encoder_checkbox.grid(row=15, column=1, sticky="nsew")
#create limit text encoder encoder entry
self.clip_penultimate_var = tk.IntVar()
self.clip_penultimate_var.set(self.clip_penultimate)
#create label
self.clip_penultimate_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Clip Penultimate")
clip_penultimate_label_ttp = CreateToolTip(self.clip_penultimate_label, "Train using the Penultimate layer of the text encoder.")
#create checkbox
self.clip_penultimate_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.clip_penultimate_var)
self.limit_text_encoder_var = tk.StringVar()
self.limit_text_encoder_var.set(self.limit_text_encoder)
#create label
self.limit_text_encoder_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Limit Text Encoder")
limit_text_encoder_label_ttp = CreateToolTip(self.limit_text_encoder_label, "Stop training the text encoder after this many epochs, use % to train for a percentage of the total epochs.")
#self.limit_text_encoder_label.grid(row=16, column=0, sticky="nsew")
#create entry
self.limit_text_encoder_entry = ctk.CTkEntry(self.training_frame_finetune_subframe, textvariable=self.limit_text_encoder_var)
#self.limit_text_encoder_entry.grid(row=16, column=1, sticky="nsew")
#create checkbox disable cudnn benchmark
self.disable_cudnn_benchmark_var = tk.IntVar()
self.disable_cudnn_benchmark_var.set(self.disable_cudnn_benchmark)
#create label for checkbox
self.disable_cudnn_benchmark_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="EXPERIMENTAL: Disable cuDNN Benchmark")
disable_cudnn_benchmark_label_ttp = CreateToolTip(self.disable_cudnn_benchmark_label, "Disable cuDNN benchmarking, may offer 2x performance on some systems and stop OOM errors.")
#self.disable_cudnn_benchmark_label.grid(row=17, column=0, sticky="nsew")
#create checkbox
self.disable_cudnn_benchmark_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.disable_cudnn_benchmark_var)
#self.disable_cudnn_benchmark_checkbox.grid(row=17, column=1, sticky="nsew")
#add conditional dropout entry
self.conditional_dropout_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Conditional Dropout")
conditional_dropout_label_ttp = CreateToolTip(self.conditional_dropout_label, "Precentage of probability to drop out a caption token to train the model to be more robust to missing words.")
self.conditional_dropout_entry = ctk.CTkEntry(self.training_frame_finetune_subframe)
self.conditional_dropout_entry.insert(0, self.conditional_dropout)
#create use EMA switch
self.use_ema_var = tk.IntVar()
self.use_ema_var.set(self.use_ema)
#create label
self.use_ema_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Use EMA")
use_ema_label_ttp = CreateToolTip(self.use_ema_label, "Use Exponential Moving Average to smooth the training paramaters. Will increase VRAM usage.")
#self.use_ema_label.grid(row=18, column=0, sticky="nsew")
#create checkbox
self.use_ema_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.use_ema_var)
#create with prior loss preservation checkbox
self.with_prior_loss_preservation_var = tk.IntVar()
self.with_prior_loss_preservation_var.set(self.with_prior_reservation)
#create label
self.with_prior_loss_preservation_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="With Prior Loss Preservation")
with_prior_loss_preservation_label_ttp = CreateToolTip(self.with_prior_loss_preservation_label, "Use the prior loss preservation method. part of Dreambooth.")
self.with_prior_loss_preservation_label.grid(row=19, column=0, sticky="nsew")
#create checkbox
self.with_prior_loss_preservation_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.with_prior_loss_preservation_var)
self.with_prior_loss_preservation_checkbox.grid(row=19, column=1, sticky="nsew")
#create prior loss preservation weight entry
self.prior_loss_preservation_weight_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Weight")
prior_loss_preservation_weight_label_ttp = CreateToolTip(self.prior_loss_preservation_weight_label, "The weight of the prior loss preservation loss.")
self.prior_loss_preservation_weight_label.grid(row=19, column=1, sticky="e")
self.prior_loss_preservation_weight_entry = ctk.CTkEntry(self.training_frame_finetune_subframe)
self.prior_loss_preservation_weight_entry.grid(row=19, column=3, sticky="w")
self.prior_loss_preservation_weight_entry.insert(0, self.prior_loss_weight)
#create contrasting light and color checkbox
self.use_offset_noise_var = tk.IntVar()
self.use_offset_noise_var.set(self.use_offset_noise)
#create label
self.offset_noise_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="With Offset Noise")
offset_noise_label_ttp = CreateToolTip(self.offset_noise_label, "Apply offset noise to latents to learn image contrast.")
self.offset_noise_label.grid(row=20, column=0, sticky="nsew")
#create checkbox
self.offset_noise_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.use_offset_noise_var)
self.offset_noise_checkbox.grid(row=20, column=1, sticky="nsew")
#create prior loss preservation weight entry
self.offset_noise_weight_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="Offset Noise Weight")
offset_noise_weight_label_ttp = CreateToolTip(self.offset_noise_weight_label, "The weight of the offset noise.")
self.offset_noise_weight_label.grid(row=20, column=1, sticky="e")
self.offset_noise_weight_entry = ctk.CTkEntry(self.training_frame_finetune_subframe)
self.offset_noise_weight_entry.grid(row=20, column=3, sticky="w")
self.offset_noise_weight_entry.insert(0, self.offset_noise_weight)
# GAN training
self.use_gan_var = tk.IntVar()
self.use_gan_var.set(self.use_gan)
#create label
self.gan_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="With GAN")
gan_label_ttp = CreateToolTip(self.gan_label, "Use GAN (experimental).")
#create checkbox
self.gan_checkbox = ctk.CTkSwitch(self.training_frame_finetune_subframe, variable=self.use_gan_var)
self.gan_checkbox.grid(row=21, column=1, sticky="nsew")
#create GAN weight entry
self.gan_weight_label = ctk.CTkLabel(self.training_frame_finetune_subframe, text="GAN Weight")
gan_weight_label_ttp = CreateToolTip(self.gan_weight_label, "The weight of the GAN.")
self.gan_weight_label.grid(row=21, column=1, sticky="e")
self.gan_weight_entry = ctk.CTkEntry(self.training_frame_finetune_subframe)
self.gan_weight_entry.grid(row=21, column=3, sticky="w")
self.gan_weight_entry.insert(0, self.gan_weight)
def create_dataset_settings_widgets(self):
#self.dataset_settings_label = ctk.CTkLabel(self.dataset_tab, text="Dataset Settings", font=("Arial", 12, "bold"))
#self.dataset_settings_label.grid(row=0, column=0, sticky="nsew")
self.dataset_frame_title = ctk.CTkLabel(self.dataset_frame, text="Dataset Settings", font=ctk.CTkFont(size=20, weight="bold"))
self.dataset_frame_title.grid(row=0, column=0, padx=20, pady=20, sticky="nsew")
#create use text files as captions checkbox
self.use_text_files_as_captions_var = tk.IntVar()
self.use_text_files_as_captions_var.set(self.use_text_files_as_captions)
#create label
self.use_text_files_as_captions_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Use Text Files as Captions")
use_text_files_as_captions_label_ttp = CreateToolTip(self.use_text_files_as_captions_label, "Use the text files as captions for training, text files must have same name as image, instance prompt/token will be ignored.")
self.use_text_files_as_captions_label.grid(row=1, column=0, sticky="nsew")
#create checkbox
self.use_text_files_as_captions_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.use_text_files_as_captions_var)
self.use_text_files_as_captions_checkbox.grid(row=1, column=1, sticky="nsew")
# create use image names as captions checkbox
self.use_image_names_as_captions_var = tk.IntVar()
self.use_image_names_as_captions_var.set(self.use_image_names_as_captions)
# create label
self.use_image_names_as_captions_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Use Image Names as Captions")
use_image_names_as_captions_label_ttp = CreateToolTip(self.use_image_names_as_captions_label, "Use the image names as captions for training, instance prompt/token will be ignored.")
self.use_image_names_as_captions_label.grid(row=2, column=0, sticky="nsew")
# create checkbox
self.use_image_names_as_captions_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.use_image_names_as_captions_var)
self.use_image_names_as_captions_checkbox.grid(row=2, column=1, sticky="nsew")
# create shuffle captions checkbox
self.shuffle_captions_var = tk.IntVar()
self.shuffle_captions_var.set(self.shuffle_captions)
# create label
self.shuffle_captions_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Shuffle Captions")
shuffle_captions_label_ttp = CreateToolTip(self.shuffle_captions_label, "Randomize the order of tags in a caption. Tags are separated by ','. Used for training with booru-style captions.")
self.shuffle_captions_label.grid(row=3, column=0, sticky="nsew")
# create checkbox
self.shuffle_captions_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.shuffle_captions_var)
self.shuffle_captions_checkbox.grid(row=3, column=1, sticky="nsew")
# create auto balance dataset checkbox
self.auto_balance_dataset_var = tk.IntVar()
self.auto_balance_dataset_var.set(self.auto_balance_concept_datasets)
# create label
self.auto_balance_dataset_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Auto Balance Dataset")
auto_balance_dataset_label_ttp = CreateToolTip(self.auto_balance_dataset_label, "Will use the concept with the least amount of images to balance the dataset by removing images from the other concepts.")
self.auto_balance_dataset_label.grid(row=4, column=0, sticky="nsew")
# create checkbox
self.auto_balance_dataset_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.auto_balance_dataset_var)
self.auto_balance_dataset_checkbox.grid(row=4, column=1, sticky="nsew")
#create add class images to dataset checkbox
self.add_class_images_to_dataset_var = tk.IntVar()
self.add_class_images_to_dataset_var.set(self.add_class_images_to_training)
#create label
self.add_class_images_to_dataset_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Add Class Images to Dataset")
add_class_images_to_dataset_label_ttp = CreateToolTip(self.add_class_images_to_dataset_label, "Will add class images without prior preservation to the dataset.")
self.add_class_images_to_dataset_label.grid(row=5, column=0, sticky="nsew")
#create checkbox
self.add_class_images_to_dataset_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.add_class_images_to_dataset_var)
self.add_class_images_to_dataset_checkbox.grid(row=5, column=1, sticky="nsew")
#create number of class images entry
self.number_of_class_images_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Number of Class Images")
number_of_class_images_label_ttp = CreateToolTip(self.number_of_class_images_label, "The number of class images to add to the dataset, if they don't exist in the class directory they will be generated.")
self.number_of_class_images_label.grid(row=6, column=0, sticky="nsew")
self.number_of_class_images_entry = ctk.CTkEntry(self.dataset_frame_subframe)
self.number_of_class_images_entry.grid(row=6, column=1, sticky="nsew")
self.number_of_class_images_entry.insert(0, self.num_class_images)
#create dataset repeat entry
self.dataset_repeats_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Dataset Repeats")
dataset_repeat_label_ttp = CreateToolTip(self.dataset_repeats_label, "The number of times to repeat the dataset, this will increase the number of images in the dataset.")
self.dataset_repeats_label.grid(row=7, column=0, sticky="nsew")
self.dataset_repeats_entry = ctk.CTkEntry(self.dataset_frame_subframe)
self.dataset_repeats_entry.grid(row=7, column=1, sticky="nsew")
self.dataset_repeats_entry.insert(0, self.dataset_repeats)
#add use_aspect_ratio_bucketing checkbox
self.use_aspect_ratio_bucketing_var = tk.IntVar()
self.use_aspect_ratio_bucketing_var.set(self.use_aspect_ratio_bucketing)
#create label
self.use_aspect_ratio_bucketing_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Use Aspect Ratio Bucketing")
use_aspect_ratio_bucketing_label_ttp = CreateToolTip(self.use_aspect_ratio_bucketing_label, "Will use aspect ratio bucketing, may improve aspect ratio generations.")
self.use_aspect_ratio_bucketing_label.grid(row=8, column=0, sticky="nsew")
#create checkbox
self.use_aspect_ratio_bucketing_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.use_aspect_ratio_bucketing_var)
self.use_aspect_ratio_bucketing_checkbox.grid(row=8, column=1, sticky="nsew")
#do something on checkbox click
self.use_aspect_ratio_bucketing_checkbox.bind("<Button-1>", self.aspect_ratio_mode_toggles)
#option menu to select aspect ratio bucketing mode
self.aspect_ratio_bucketing_mode_var = tk.StringVar()
self.aspect_ratio_bucketing_mode_var.set(self.aspect_ratio_bucketing_mode)
self.aspect_ratio_bucketing_mode_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Aspect Ratio Bucketing Mode")
aspect_ratio_bucketing_mode_label_ttp = CreateToolTip(self.aspect_ratio_bucketing_mode_label, "Select what the Auto Bucketing will do in case the bucket doesn't match the batch size, dynamic will choose the least amount of adding/removing of images per bucket.")
self.aspect_ratio_bucketing_mode_label.grid(row=9, column=0, sticky="nsew")
self.aspect_ratio_bucketing_mode_option_menu = ctk.CTkOptionMenu(self.dataset_frame_subframe, variable=self.aspect_ratio_bucketing_mode_var, values=['Dynamic Fill', 'Drop Fill', 'Duplicate Fill'])
self.aspect_ratio_bucketing_mode_option_menu.grid(row=9, column=1, sticky="nsew")
#option menu to select dynamic bucketing mode (if enabled)
self.dynamic_bucketing_mode_var = tk.StringVar()
self.dynamic_bucketing_mode_var.set(self.dynamic_bucketing_mode)
self.dynamic_bucketing_mode_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Dynamic Preference")
dynamic_bucketing_mode_label_ttp = CreateToolTip(self.dynamic_bucketing_mode_label, "If you're using dynamic mode, choose what you prefer in the case that dropping and duplicating are the same amount of images.")
self.dynamic_bucketing_mode_label.grid(row=10, column=0, sticky="nsew")
self.dynamic_bucketing_mode_option_menu = ctk.CTkOptionMenu(self.dataset_frame_subframe, variable=self.dynamic_bucketing_mode_var, values=['Duplicate', 'Drop'])
self.dynamic_bucketing_mode_option_menu.grid(row=10, column=1, sticky="nsew")
#add shuffle dataset per epoch checkbox
self.shuffle_dataset_per_epoch_var = tk.IntVar()
self.shuffle_dataset_per_epoch_var.set(self.shuffle_dataset_per_epoch)
#create label
self.shuffle_dataset_per_epoch_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Shuffle Dataset Per Epoch")
shuffle_dataset_per_epoch_label_ttp = CreateToolTip(self.shuffle_dataset_per_epoch_label, "Will shuffle the dataset per epoch, may improve training.")
self.shuffle_dataset_per_epoch_label.grid(row=1, column=2, sticky="nsew")
#create checkbox
self.shuffle_dataset_per_epoch_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.shuffle_dataset_per_epoch_var)
self.shuffle_dataset_per_epoch_checkbox.grid(row=1, column=3, sticky="nsew")
#masked training
self.masked_training_var = tk.IntVar()
self.masked_training_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Masked Training")
masked_training_label_ttp = CreateToolTip(self.masked_training_label, "Enable training on masked areas of the dataset.")
self.masked_training_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.masked_training_var)
self.masked_training_var.set(self.masked_training)
self.masked_training_label.grid(row=2, column=2, sticky="nsew")
self.masked_training_checkbox.grid(row=2, column=3, sticky="nsew")
#normalize masked area loss
self.normalize_masked_area_loss_var = tk.IntVar()
self.normalize_masked_area_loss_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Normalize Masked Area Loss")
normalize_masked_area_loss_label_ttp = CreateToolTip(self.normalize_masked_area_loss_label, "Normalize loss values based on the masked area of images.")
self.normalize_masked_area_loss_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.normalize_masked_area_loss_var)
self.normalize_masked_area_loss_var.set(self.normalize_masked_area_loss)
self.normalize_masked_area_loss_label.grid(row=3, column=2, sticky="nsew")
self.normalize_masked_area_loss_checkbox.grid(row=3, column=3, sticky="nsew")
#unmasked probability
self.unmasked_probability_var = tk.StringVar()
self.unmasked_probability_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Unmasked Steps")
unmasked_probability_label_ttp = CreateToolTip(self.unmasked_probability_label, "Fraction of steps to train on unmasked images.")
self.unmasked_probability_var.set(self.unmasked_probability)
self.unmasked_probability_entry = ctk.CTkEntry(self.dataset_frame_subframe, textvariable=self.unmasked_probability_var)
self.unmasked_probability_label.grid(row=4, column=2, sticky="nsew")
self.unmasked_probability_entry.grid(row=4, column=3, sticky="nsew")
#unmasked probability
self.max_denoising_strength_var = tk.StringVar()
self.max_denoising_strength_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Max Denoising Strength")
max_denoising_strength_label_ttp = CreateToolTip(self.max_denoising_strength_label, "Max denoising factor to train on. Set this to 70%-80% for masked training and to reduce overfitting. 100% is the default behavior for training on up to fully noisy images.")
self.max_denoising_strength_var.set(self.max_denoising_strength)
self.max_denoising_strength_entry = ctk.CTkEntry(self.dataset_frame_subframe, textvariable=self.max_denoising_strength_var)
self.max_denoising_strength_label.grid(row=5, column=2, sticky="nsew")
self.max_denoising_strength_entry.grid(row=5, column=3, sticky="nsew")
#fallback mask prompt
self.fallback_mask_prompt_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Fallback Mask Prompt")
fallback_mask_prompt_label_ttp = CreateToolTip(self.fallback_mask_prompt_label, "A prompt used for masking images without a mask.")
self.fallback_mask_prompt_entry = ctk.CTkEntry(self.dataset_frame_subframe)
self.fallback_mask_prompt_entry.insert(0, self.fallback_mask_prompt)
self.fallback_mask_prompt_label.grid(row=6, column=2, sticky="nsew")
self.fallback_mask_prompt_entry.grid(row=6, column=3, sticky="nsew")
#add download dataset entry
#add a switch to duplicate fill bucket
#self.duplicate_fill_buckets_var = tk.IntVar()
#self.duplicate_fill_buckets_var.set(self.duplicate_fill_buckets)
#create label
#self.duplicate_fill_buckets_label = ctk.CTkLabel(self.dataset_frame_subframe, text="Force Fill Buckets with Duplicates")
#duplicate_fill_buckets_label_ttp = CreateToolTip(self.duplicate_fill_buckets_label, "Will duplicate to fill buckets, enable this to avoid buckets dropping images.")
#self.duplicate_fill_buckets_label.grid(row=8, column=0, sticky="nsew")
#create checkbox
#self.duplicate_fill_buckets_checkbox = ctk.CTkSwitch(self.dataset_frame_subframe, variable=self.duplicate_fill_buckets_var)
#self.duplicate_fill_buckets_checkbox.grid(row=8, column=1, sticky="nsew")
#self.use_aspect_ratio_bucketing_checkbox.bind("<Button-1>", self.duplicate_fill_buckets_label.configure(state="disabled"))
#self.use_aspect_ratio_bucketing_checkbox.bind("<Button-1>", self.duplicate_fill_buckets_checkbox.configure(state="disabled"))
def create_sampling_settings_widgets(self):
self.sampling_title = ctk.CTkLabel(self.sampling_frame, text="Sampling Settings", font=ctk.CTkFont(size=20, weight="bold"))
self.sampling_title.grid(row=0, column=0, padx=20, pady=20)
#create sample every n steps entry
self.sample_step_interval_label = ctk.CTkLabel(self.sampling_frame_subframe, text="Sample Every N Steps")
sample_step_interval_label_ttp = CreateToolTip(self.sample_step_interval_label, "Will sample the model every N steps.")
self.sample_step_interval_label.grid(row=1, column=0, sticky="nsew")
self.sample_step_interval_entry = ctk.CTkEntry(self.sampling_frame_subframe)
self.sample_step_interval_entry.grid(row=1, column=1, sticky="nsew")
self.sample_step_interval_entry.insert(0, self.sample_step_interval)
#create saver every n epochs entry
self.save_every_n_epochs_label = ctk.CTkLabel(self.sampling_frame_subframe, text="Save and sample Every N Epochs")
save_every_n_epochs_label_ttp = CreateToolTip(self.save_every_n_epochs_label, "Will save and sample the model every N epochs.")
self.save_every_n_epochs_label.grid(row=2, column=0, sticky="nsew")
self.save_every_n_epochs_entry = ctk.CTkEntry(self.sampling_frame_subframe)
self.save_every_n_epochs_entry.grid(row=2, column=1, sticky="nsew")
self.save_every_n_epochs_entry.insert(0, self.save_and_sample_every_x_epochs)
#create number of samples to generate entry
self.number_of_samples_to_generate_label = ctk.CTkLabel(self.sampling_frame_subframe, text="Number of Samples to Generate")
number_of_samples_to_generate_label_ttp = CreateToolTip(self.number_of_samples_to_generate_label, "The number of samples to generate per prompt.")
self.number_of_samples_to_generate_label.grid(row=3, column=0, sticky="nsew")
self.number_of_samples_to_generate_entry = ctk.CTkEntry(self.sampling_frame_subframe)
self.number_of_samples_to_generate_entry.grid(row=3, column=1, sticky="nsew")
self.number_of_samples_to_generate_entry.insert(0, self.num_samples_to_generate)
#create sample width entry
self.sample_width_label = ctk.CTkLabel(self.sampling_frame_subframe, text="Sample Width")
sample_width_label_ttp = CreateToolTip(self.sample_width_label, "The width of the generated samples.")
self.sample_width_label.grid(row=4, column=0, sticky="nsew")
self.sample_width_entry = ctk.CTkEntry(self.sampling_frame_subframe)
self.sample_width_entry.grid(row=4, column=1, sticky="nsew")
self.sample_width_entry.insert(0, self.sample_width)
#create sample height entry
self.sample_height_label = ctk.CTkLabel(self.sampling_frame_subframe, text="Sample Height")
sample_height_label_ttp = CreateToolTip(self.sample_height_label, "The height of the generated samples.")
self.sample_height_label.grid(row=5, column=0, sticky="nsew")
self.sample_height_entry = ctk.CTkEntry(self.sampling_frame_subframe)
self.sample_height_entry.grid(row=5, column=1, sticky="nsew")
self.sample_height_entry.insert(0, self.sample_height)
#create a checkbox to sample_on_training_start
self.sample_on_training_start_var = tk.IntVar()
self.sample_on_training_start_var.set(self.sample_on_training_start)
#create label
self.sample_on_training_start_label = ctk.CTkLabel(self.sampling_frame_subframe, text="Sample On Training Start")
sample_on_training_start_label_ttp = CreateToolTip(self.sample_on_training_start_label, "Will save and sample the model on training start, useful for debugging and comparison.")
self.sample_on_training_start_label.grid(row=6, column=0, sticky="nsew")
#create checkbox
self.sample_on_training_start_checkbox = ctk.CTkSwitch(self.sampling_frame_subframe, variable=self.sample_on_training_start_var)
self.sample_on_training_start_checkbox.grid(row=6, column=1, sticky="nsew")
#create sample random aspect ratio checkbox
self.sample_random_aspect_ratio_var = tk.IntVar()
self.sample_random_aspect_ratio_var.set(self.sample_random_aspect_ratio)
#create label
self.sample_random_aspect_ratio_label = ctk.CTkLabel(self.sampling_frame_subframe, text="Sample Random Aspect Ratio")
sample_random_aspect_ratio_label_ttp = CreateToolTip(self.sample_random_aspect_ratio_label, "Will generate samples with random aspect ratios, useful to check aspect ratio bucketing.")
self.sample_random_aspect_ratio_label.grid(row=7, column=0, sticky="nsew")
#create checkbox
self.sample_random_aspect_ratio_checkbox = ctk.CTkSwitch(self.sampling_frame_subframe, variable=self.sample_random_aspect_ratio_var)
self.sample_random_aspect_ratio_checkbox.grid(row=7, column=1, sticky="nsew")
#create an optionmenu to select a number of desired prompts to sample from the batch
self.batch_prompt_sampling_optionmenu_var = tk.StringVar()
self.batch_prompt_sampling_optionmenu_var.set(self.batch_prompt_sampling_num_prompts)
self.batch_prompt_sampling_label = ctk.CTkLabel(self.sampling_frame_subframe, text="Batch Prompt Sampling")
self.batch_prompt_sampling_label.grid(row=8, column=0, sticky="nsew")
self.batch_prompt_sampling_optionmenu = ctk.CTkOptionMenu(self.sampling_frame_subframe, variable=self.batch_prompt_sampling_optionmenu_var, values=['0','1','2','3','4','5','6','7','8','9','10'])
self.batch_prompt_sampling_optionmenu_ttp = CreateToolTip(self.batch_prompt_sampling_label, "Will try to sample prompts/tokens from the batch to use as prompts for the samples.")
self.batch_prompt_sampling_optionmenu.grid(row=8, column=1, sticky="nsew")
#create add sample prompt button
self.add_sample_prompt_button = ctk.CTkButton(self.sampling_frame_subframe, text="Add Sample Prompt", command=self.add_sample_prompt)
add_sample_prompt_button_ttp = CreateToolTip(self.add_sample_prompt_button, "Add a sample prompt to the list.")
self.add_sample_prompt_button.grid(row=1, column=2, sticky="nsew")
#create remove sample prompt button
self.remove_sample_prompt_button = ctk.CTkButton(self.sampling_frame_subframe, text="Remove Sample Prompt", command=self.remove_sample_prompt)
remove_sample_prompt_button_ttp = CreateToolTip(self.remove_sample_prompt_button, "Remove a sample prompt from the list.")
self.remove_sample_prompt_button.grid(row=1, column=3, sticky="nsew")
#for every prompt in self.sample_prompts, create a label and entry
self.sample_prompt_labels = []
self.sample_prompt_entries = []
self.sample_prompt_row = 2
for i in range(len(self.sample_prompts)):
#create label
self.sample_prompt_labels.append(ctk.CTkLabel(self.sampling_frame_subframe, text="Sample Prompt " + str(i)))
self.sample_prompt_labels[i].grid(row=self.sample_prompt_row + i, column=2, sticky="nsew")
#create entry
self.sample_prompt_entries.append(ctk.CTkEntry(self.sampling_frame_subframe, width=70))
self.sample_prompt_entries[i].grid(row=self.sample_prompt_row + i, column=3, sticky="nsew")
self.sample_prompt_entries[i].insert(0, self.sample_prompts[i])
for i in self.sample_prompt_entries:
i.bind("<Button-3>", self.create_right_click_menu)
self.controlled_sample_row = 2 + len(self.sample_prompts)
#create a button to add controlled seed sample
self.add_controlled_seed_sample_button = ctk.CTkButton(self.sampling_frame_subframe, text="Add Controlled Seed Sample", command=self.add_controlled_seed_sample)
add_controlled_seed_sample_button_ttp = CreateToolTip(self.add_controlled_seed_sample_button, "Will generate a sample using the seed at every save interval.")
self.add_controlled_seed_sample_button.grid(row=self.controlled_sample_row + len(self.sample_prompts), column=2, sticky="nsew")
#create a button to remove controlled seed sample
self.remove_controlled_seed_sample_button = ctk.CTkButton(self.sampling_frame_subframe, text="Remove Controlled Seed Sample", command=self.remove_controlled_seed_sample)
remove_controlled_seed_sample_button_ttp = CreateToolTip(self.remove_controlled_seed_sample_button, "Will remove the last controlled seed sample.")
self.remove_controlled_seed_sample_button.grid(row=self.controlled_sample_row + len(self.sample_prompts), column=3, sticky="nsew")
#for every controlled seed sample in self.controlled_seed_samples, create a label and entry
self.controlled_seed_sample_labels = []
self.controlled_seed_sample_entries = []
self.controlled_seed_buttons = [self.add_controlled_seed_sample_button, self.remove_controlled_seed_sample_button]
for i in range(len(self.add_controlled_seed_to_sample)):
#create label
self.controlled_seed_sample_labels.append(ctk.CTkLabel(self.sampling_frame_subframe, text="Controlled Seed Sample " + str(i)))
self.controlled_seed_sample_labels[i].grid(row=self.controlled_sample_row + len(self.sample_prompts) + i, column=2, sticky="nsew")
#create entry
self.controlled_seed_sample_entries.append(ctk.CTkEntry(self.sampling_frame_subframe))
self.controlled_seed_sample_entries[i].grid(row=self.controlled_sample_row + len(self.sample_prompts) + i, column=3, sticky="nsew")
self.controlled_seed_sample_entries[i].insert(0, self.add_controlled_seed_to_sample[i])
for i in self.controlled_seed_sample_entries:
i.bind("<Button-3>", self.create_right_click_menu)
def create_data_settings_widgets(self):
#add concept settings label
self.data_frame_title = ctk.CTkLabel(self.data_frame, text='Data Settings', font=ctk.CTkFont(size=20, weight="bold"))
self.data_frame_title.grid(row=0, column=0,columnspan=2, padx=20, pady=20)
#add load concept from json button
#add empty label
empty = ctk.CTkLabel(self.data_frame_subframe, text="",width=40)
empty.grid(row=1, column=0, sticky="nsew")
self.load_concept_from_json_button = ctk.CTkButton(self.data_frame_subframe, text="Load Concepts From JSON", command=self.load_concept_from_json)
self.load_concept_from_json_button.grid(row=1, column=1, sticky="e")
load_concept_from_json_button_ttp = CreateToolTip(self.load_concept_from_json_button, "Load concepts from a JSON file, compatible with Shivam's concept list.")
#self.load_concept_from_json_button.grid(row=1, column=0, sticky="nsew")
#add save concept to json button
self.save_concept_to_json_button = ctk.CTkButton(self.data_frame_subframe, text="Save Concepts To JSON", command=self.save_concept_to_json)
self.save_concept_to_json_button.grid(row=1, column=2, sticky="e")
save_concept_to_json_button_ttp = CreateToolTip(self.save_concept_to_json_button, "Save concepts to a JSON file, compatible with Shivam's concept list.")
#self.save_concept_to_json_button.grid(row=1, column=1, sticky="nsew")
#create a button to add concept
self.add_concept_button = ctk.CTkButton(self.data_frame_subframe, text="Add Concept", command=self.add_new_concept,width=50)
self.add_concept_button.grid(row=1, column=3, sticky="e")
#self.add_concept_button.grid(row=2, column=0, sticky="nsew")
#create a button to remove concept
self.remove_concept_button = ctk.CTkButton(self.data_frame_subframe, text="Remove Concept", command=self.remove_new_concept,width=50)
self.remove_concept_button.grid(row=1, column=4, sticky="e")
#self.remove_concept_button.grid(row=2, column=1, sticky="nsew")
self.previous_page_button = ctk.CTkButton(self.data_frame_subframe, text="Previous Page", command=self.next_concept_page,width=50, state="disabled")
self.previous_page_button.grid(row=1, column=5, sticky="e")
#self.remove_concept_button.grid(row=2, column=1, sticky="nsew")
self.next_page_button = ctk.CTkButton(self.data_frame_subframe, text="Next Page", command=self.next_concept_page,width=50, state="disabled")
self.next_page_button.grid(row=1, column=6, sticky="e")
#self.remove_concept_button.grid(row=2, column=1, sticky="nsew")
#self.concept_entries = []
#self.concept_labels = []
#self.concept_file_dialog_buttons = []
def next_concept_page(self):
self.concept_page += 1
self.update_concept_page()
def create_plyaground_widgets(self):
self.playground_title = ctk.CTkLabel(self.playground_frame, text="Model Playground", font=ctk.CTkFont(size=20, weight="bold"))
#add play model entry with button to open file dialog
self.play_model_label = ctk.CTkLabel(self.playground_frame_subframe, text="Diffusers Model Directory")
self.play_model_entry = ctk.CTkEntry(self.playground_frame_subframe,placeholder_text="CTkEntry")
self.play_model_entry.insert(0, self.play_input_model_path)
self.play_model_file_dialog_button = ctk.CTkButton(self.playground_frame_subframe, text="...",width=5, command=lambda: self.open_file_dialog(self.play_model_entry))
self.play_model_file_dialog_button.grid(row=0, column=2, sticky="w")
#add a prompt entry to play tab
self.play_prompt_label = ctk.CTkLabel(self.playground_frame_subframe, text="Prompt")
self.play_prompt_entry = ctk.CTkEntry(self.playground_frame_subframe)
self.play_prompt_entry.insert(0, self.play_postive_prompt)
#add a negative prompt entry to play tab
self.play_negative_prompt_label = ctk.CTkLabel(self.playground_frame_subframe, text="Negative Prompt")
self.play_negative_prompt_entry = ctk.CTkEntry(self.playground_frame_subframe, width=40)
self.play_negative_prompt_entry.insert(0, self.play_negative_prompt)
#add a seed entry to play tab
self.play_seed_label = ctk.CTkLabel(self.playground_frame_subframe, text="Seed")
self.play_seed_entry = ctk.CTkEntry(self.playground_frame_subframe)
self.play_seed_entry.insert(0, self.play_seed)
#add a keep seed checkbox next to seed entry
self.play_keep_seed_var = tk.IntVar()
self.play_keep_seed_var.set(self.play_keep_seed)
self.play_keep_seed_checkbox = ctk.CTkCheckBox(self.playground_frame_subframe, text="Keep Seed", variable=self.play_keep_seed_var)
#add a temperature slider from 0.1 to 1.0
#create a steps slider from 1 to 100
self.play_steps_label = ctk.CTkLabel(self.playground_frame_subframe, text=f"Steps: {self.play_steps}")
self.play_steps_slider = ctk.CTkSlider(self.playground_frame_subframe, from_=1, to=150, number_of_steps=149, command= lambda x: self.play_steps_label.configure(text="Steps: " + str(int(self.play_steps_slider.get()))))
#on slider change update the value
#self.play_steps_slider.bind("<Configure>", self.play_steps_label.configure(text="Steps: " + str(self.play_steps_slider.get())))
self.play_steps_slider.set(self.play_steps)
#add a scheduler selection box
self.play_scheduler_label = ctk.CTkLabel(self.playground_frame_subframe, text="Scheduler")
self.play_scheduler_variable = tk.StringVar(self.playground_frame_subframe)
self.play_scheduler_variable.set(self.play_scheduler)
self.play_scheduler_option_menu = ctk.CTkOptionMenu(self.playground_frame_subframe, variable=self.play_scheduler_variable, values=self.schedulers)
#add resoltuion slider from 256 to 1024 in increments of 64 for width and height
self.play_resolution_label = ctk.CTkLabel(self.playground_frame_subframe, text="Resolution")
self.play_resolution_label_height = ctk.CTkLabel(self.playground_frame_subframe, text=f"Height: {self.play_sample_height}")
self.play_resolution_label_width = ctk.CTkLabel(self.playground_frame_subframe, text=f"Width: {self.play_sample_width}")
#add sliders for height and width
#make a list of resolutions from 256 to 2048 in increments of 64
#play_resolutions = []
#for i in range(256,2049,64):
# play_resolutions.append(str(i))
self.play_resolution_slider_height = ctk.CTkSlider(self.playground_frame_subframe,from_=128, to=2048, number_of_steps=30, command= lambda x: self.play_resolution_label_height.configure(text="Height: " + str(int(self.play_resolution_slider_height.get()))))
self.play_resolution_slider_width = ctk.CTkSlider(self.playground_frame_subframe, from_=128, to=2048, number_of_steps=30, command= lambda x: self.play_resolution_label_width.configure(text="Width: " + str(int(self.play_resolution_slider_width.get()))))
self.play_resolution_slider_width.set(self.play_sample_width)
self.play_resolution_slider_height.set(self.play_sample_height)
#add a cfg slider 0.5 to 25 in increments of 0.5
self.play_cfg_label = ctk.CTkLabel(self.playground_frame_subframe, text=f"CFG: {self.play_cfg}")
self.play_cfg_slider = ctk.CTkSlider(self.playground_frame_subframe, from_=0.5, to=25, number_of_steps=49, command= lambda x: self.play_cfg_label.configure(text="CFG: " + str(self.play_cfg_slider.get())))
self.play_cfg_slider.set(self.play_cfg)
#add Toolbox label
self.play_toolbox_label = ctk.CTkLabel(self.playground_frame_subframe, text="Toolbox")
self.play_generate_image_button = ctk.CTkButton(self.playground_frame_subframe, text="Generate Image", command=lambda: self.play_generate_image(self.play_model_entry.get(), self.play_prompt_entry.get(), self.play_negative_prompt_entry.get(), self.play_seed_entry.get(), self.play_scheduler_variable.get(), int(self.play_resolution_slider_height.get()), int(self.play_resolution_slider_width.get()), self.play_cfg_slider.get(), self.play_steps_slider.get()))
#create a canvas to display the generated image
#self.play_image_canvas = tk.Canvas(self.playground_frame_subframe, width=512, height=512, highlightthickness=0)
#self.play_image_canvas.grid(row=11, column=0, columnspan=3, sticky="nsew")
#create a button to generate image
self.play_prompt_entry.bind("<Return>", lambda event: self.play_generate_image(self.play_model_entry.get(), self.play_prompt_entry.get(), self.play_negative_prompt_entry.get(), self.play_seed_entry.get(), self.play_scheduler_variable.get(), int(self.play_resolution_slider_height.get()), int(self.play_resolution_slider_width.get()), self.play_cfg_slider.get(), self.play_steps_slider.get()))
self.play_negative_prompt_entry.bind("<Return>", lambda event: self.play_generate_image(self.play_model_entry.get(), self.play_prompt_entry.get(), self.play_negative_prompt_entry.get(), self.play_seed_entry.get(), self.play_scheduler_variable.get(), int(self.play_resolution_slider_height.get()), int(self.play_resolution_slider_width.get()), self.play_cfg_slider.get(), self.play_steps_slider.get()))
#add convert to ckpt button
self.play_convert_to_ckpt_button = ctk.CTkButton(self.playground_frame_subframe, text="Convert To CKPT", command=lambda:self.convert_to_ckpt(model_path=self.play_model_entry.get()))
#add interative generation button to act as a toggle
#convert to safetensors button
#self.play_interactive_generation_button_bool = tk.BooleanVar()
#self.play_interactive_generation_button = ctk.CTkButton(self.playground_frame_subframe, text="Interactive Generation", command=self.interactive_generation_button)
#self.play_interactive_generation_button_bool.set(False)#add play model entry with button to open file dialog
def create_toolbox_widgets(self):
#add label to tools tab
self.toolbox_title = ctk.CTkLabel(self.toolbox_frame, text="Toolbox", font=ctk.CTkFont(size=20, weight="bold"))
self.toolbox_title.grid(row=0, column=0, padx=20, pady=20)
#empty row
#self.empty_row = ctk.CTkLabel(self.toolbox_frame_subframe, text="")
#self.empty_row.grid(row=1, column=0, sticky="nsew")
#add a label model tools title
self.model_tools_label = ctk.CTkLabel(self.toolbox_frame_subframe, text="Model Tools", font=ctk.CTkFont(size=20, weight="bold"))
self.model_tools_label.grid(row=2, column=0,columnspan=3, sticky="nsew",pady=10)
#empty row
#self.empty_row = ctk.CTkLabel(self.toolbox_frame_subframe, text="")
#self.empty_row.grid(row=3, column=0, sticky="nsew")
#add a button to convert to ckpt
self.convert_to_ckpt_button = ctk.CTkButton(self.toolbox_frame_subframe, text="Convert Diffusers To CKPT", command=lambda:self.convert_to_ckpt())
self.convert_to_ckpt_button.grid(row=4, column=0, columnspan=1, sticky="nsew")
#convert to safetensors button
self.convert_to_safetensors_button = ctk.CTkButton(self.toolbox_frame_subframe, text="Convert Diffusers To SafeTensors", command=lambda:self.convert_to_safetensors())
self.convert_to_safetensors_button.grid(row=4, column=1, columnspan=1, sticky="nsew")
#add a button to convert ckpt to diffusers
self.convert_ckpt_to_diffusers_button = ctk.CTkButton(self.toolbox_frame_subframe, text="Convert CKPT To Diffusers", command=lambda:self.convert_ckpt_to_diffusers())
self.convert_ckpt_to_diffusers_button.grid(row=4, column=2, columnspan=1, sticky="nsew")
#empty row
self.empty_row = ctk.CTkLabel(self.toolbox_frame_subframe, text="")
self.empty_row.grid(row=6, column=0, sticky="nsew")
#add a label dataset tools title
self.dataset_tools_label = ctk.CTkLabel(self.toolbox_frame_subframe, text="Dataset Tools", font=ctk.CTkFont(size=20, weight="bold"))
self.dataset_tools_label.grid(row=7, column=0,columnspan=3, sticky="nsew")
#add a button for Caption Buddy
#self.caption_buddy_button = ctk.CTkButton(self.toolbox_frame_subframe, text="Launch Caption Buddy",font=("Helvetica", 10, "bold"), command=lambda:self.caption_buddy())
#self.caption_buddy_button.grid(row=8, column=0, columnspan=3, sticky="nsew")
self.download_dataset_label = ctk.CTkLabel(self.toolbox_frame_subframe, text="Clone Dataset from HF")
download_dataset_label_ttp = CreateToolTip(self.download_dataset_label, "Will git clone a HF dataset repo")
self.download_dataset_label.grid(row=9, column=0, sticky="nsew")
self.download_dataset_entry = ctk.CTkEntry(self.toolbox_frame_subframe)
self.download_dataset_entry.grid(row=9, column=1, sticky="nsew")
#add download dataset button
self.download_dataset_button = ctk.CTkButton(self.toolbox_frame_subframe, text="Download Dataset", command=self.download_dataset)
self.download_dataset_button.grid(row=9, column=2, sticky="nsew")
def find_latest_generated_model(self,entry=None):
last_output_path = self.output_path_entry.get()
last_num_epochs = self.train_epochs_entry.get()
last_model_path = last_output_path + os.sep + last_num_epochs
#convert last_model_path seperators to the correct ones for the os
last_model_path = last_model_path.replace("/", os.sep)
last_model_path = last_model_path.replace("\\", os.sep)
#check if the output path is valid
if last_output_path != "":
#check if the output path exists
if os.path.exists(last_output_path):
#check if the output path has a model in it
if os.path.exists(last_model_path):
#check if the model is a ckpt
if all(x in os.listdir(last_model_path) for x in self.required_folders):
# print(newest_dir)
last_model_path = last_model_path.replace("/", os.sep).replace("\\", os.sep)
if entry:
entry.delete(0, tk.END)
entry.insert(0, last_model_path)
return
else:
newest_dirs = sorted(glob.iglob(last_output_path + os.sep + '*'), key=os.path.getctime, reverse=True)
#remove anything that is not a dir
newest_dirs = [x for x in newest_dirs if os.path.isdir(x)]
#sort newest_dirs by date
for newest_dir in newest_dirs:
#check if the newest dir has all the required folders
if all(x in os.listdir(newest_dir) for x in self.required_folders):
last_model_path = newest_dir.replace("/", os.sep).replace("\\", os.sep)
if entry:
entry.delete(0, tk.END)
entry.insert(0, last_model_path)
return
else:
newest_dirs = sorted(glob.iglob(last_output_path + os.sep + '*'), key=os.path.getctime, reverse=True)
newest_dirs = [x for x in newest_dirs if os.path.isdir(x)]
#sort newest_dirs by date
for newest_dir in newest_dirs:
#check if the newest dir has all the required folders
if all(x in os.listdir(newest_dir) for x in self.required_folders):
last_model_path = newest_dir.replace("/", os.sep).replace("\\", os.sep)
if entry:
entry.delete(0, tk.END)
entry.insert(0, last_model_path)
return
else:
return
else:
return
def update_ST(self):
#git
new_version = subprocess.check_output(["git", "ls-remote", "http://github.com/RossM/StableTuner.git","main"], cwd=Path(__file__).resolve().parent).strip().decode()[0:7]
#open the stabletuner_hash.cfg file
#update the stabletuner_hash.cfg file
with open("configs/stabletuner_hash.cfg", "w") as f:
f.write(new_version)
#update the stabletuner
#self.update_stabletuner()
#git pull and wait for it to finish
subprocess.run(["git", "stash"], cwd=Path(__file__).resolve().parent)
subprocess.run(["git", "pull"], cwd=Path(__file__).resolve().parent)
print('pulled')
#restart the app
restart(self)
def packageForCloud(self):
#check if there's an export folder in the cwd and if not create one
if not os.path.exists("exports"):
os.mkdir("exports")
exportDir = self.export_name
if not os.path.exists("exports" + os.sep + exportDir):
os.mkdir("exports" + os.sep + exportDir)
else:
#remove the old export folder
shutil.rmtree("exports" + os.sep + exportDir)
os.mkdir("exports" + os.sep + exportDir)
self.full_export_path = "exports" + os.sep + exportDir
os.mkdir(self.full_export_path + os.sep + 'output')
os.mkdir(self.full_export_path + os.sep + 'datasets')
#check if self.model_path is a directory
if os.path.isdir(self.model_path):
#get the directory name
model_name = os.path.basename(self.model_path)
#check if model_name can be an int
try:
model_name = int(model_name)
#get the parent directory name
model_name = os.path.basename(os.path.dirname(self.model_path))
except:
pass
#create a folder in the export folder with the model name
if not os.path.exists(self.full_export_path + os.sep + 'input_model'+ os.sep):
os.mkdir(self.full_export_path + os.sep + 'input_model'+ os.sep)
if not os.path.exists(self.full_export_path + os.sep + 'input_model'+ os.sep + model_name):
os.mkdir(self.full_export_path + os.sep + 'input_model'+ os.sep + model_name)
#copy the model to the export folder
shutil.copytree(self.model_path, self.full_export_path + os.sep +'input_model'+ os.sep+ model_name + os.sep,dirs_exist_ok=True)
self.model_path= 'input_model' + '/' + model_name
if os.path.isdir(self.vae_path):
#get the directory name
vae_name = os.path.basename(self.vae_path)
#create a folder in the export folder with the model name
if not os.path.exists(self.full_export_path + os.sep + 'input_vae_model'+ os.sep + vae_name):
os.mkdir(self.full_export_path + os.sep + 'input_vae_model'+ os.sep + vae_name)
#copy the model to the export folder
shutil.copytree(self.vae_path, self.full_export_path + os.sep +'input_vae_model'+ os.sep+ vae_name + os.sep + vae_name,dirs_exist_ok=True)
self.vae_path= 'input_vae_model' + '/' + vae_name
if self.output_path == '':
self.output_path = 'output'
else:
#get the dirname
output_name = os.path.basename(self.output_path)
#create a folder in the export folder with the model name
if not os.path.exists(self.full_export_path + os.sep + 'output'+ os.sep + output_name):
os.mkdir(self.full_export_path + os.sep + 'output'+ os.sep + output_name)
self.output_path = 'output' + '/' + output_name
#loop through the concepts and add them to the export folder
concept_counter = 0
new_concepts = []
for concept in self.concepts:
concept_counter += 1
concept_data_dir = os.path.basename(concept['instance_data_dir'])
#concept is a dict
#get the concept name
concept_name = concept['instance_prompt']
#if concept_name is ''
if concept_name == '':
concept_name = 'concept_' + str(concept_counter)
#create a folder in the export/datasets folder with the concept name
#if not os.path.exists(self.full_export_path + os.sep + 'datasets'+ os.sep + concept_name):
# os.mkdir(self.full_export_path + os.sep + 'datasets'+ os.sep + concept_name)
#copy the concept to the export folder
shutil.copytree(concept['instance_data_dir'], self.full_export_path + os.sep + 'datasets'+ os.sep + concept_data_dir ,dirs_exist_ok=True)
concept_class_name = concept['class_prompt']
if concept_class_name == '':
#if class_data_dir is ''
if concept['class_data_dir'] != '':
concept_class_name = 'class_' + str(concept_counter)
#create a folder in the export/datasets folder with the concept name
if not os.path.exists(self.full_export_path + os.sep + 'datasets'+ os.sep + concept_class_name):
os.mkdir(self.full_export_path + os.sep + 'datasets'+ os.sep + concept_class_name)
#copy the concept to the export folder
shutil.copytree(concept['class_data_dir'], self.full_export_path + os.sep + 'datasets'+ os.sep + concept_class_name+ os.sep,dirs_exist_ok=True)
else:
if concept['class_data_dir'] != '':
#create a folder in the export/datasets folder with the concept name
if not os.path.exists(self.full_export_path + os.sep + 'datasets'+ os.sep + concept_class_name):
os.mkdir(self.full_export_path + os.sep + 'datasets'+ os.sep + concept_class_name)
#copy the concept to the export folder
shutil.copytree(concept['class_data_dir'], self.full_export_path + os.sep + 'datasets'+ os.sep + concept_class_name+ os.sep,dirs_exist_ok=True)
#create a new concept dict
new_concept = {}
new_concept['instance_prompt'] = concept_name
new_concept['instance_data_dir'] = 'datasets' + '/' + concept_data_dir
new_concept['class_prompt'] = concept_class_name
new_concept['class_data_dir'] = 'datasets' + '/' + concept_class_name if concept_class_name != '' else ''
new_concept['do_not_balance'] = concept['do_not_balance']
new_concept['use_sub_dirs'] = concept['use_sub_dirs']
new_concepts.append(new_concept)
#make scripts folder
self.save_concept_to_json(filename=self.full_export_path + os.sep + 'stabletune_concept_list.json', preMadeConcepts=new_concepts)
if not os.path.exists(self.full_export_path + os.sep + 'scripts'):
os.mkdir(self.full_export_path + os.sep + 'scripts')
#copy the scripts/trainer.py the scripts folder
shutil.copy('scripts' + os.sep + 'trainer.py', self.full_export_path + os.sep + 'scripts' + os.sep + 'trainer.py')
#copy trainer_utils.py to the scripts folder
shutil.copy('scripts' + os.sep + 'trainer_util.py', self.full_export_path + os.sep + 'scripts' + os.sep + 'trainer_util.py')
#copy converters.py to the scripts folder
shutil.copy('scripts' + os.sep + 'converters.py', self.full_export_path + os.sep + 'scripts' + os.sep + 'converters.py')
#copy model_util.py to the scripts folder
shutil.copy('scripts' + os.sep + 'model_util.py', self.full_export_path + os.sep + 'scripts' + os.sep + 'model_util.py')
#copy clip_seg to the scripts folder
shutil.copy('scripts' + os.sep + 'clip_segmentation.py', self.full_export_path + os.sep + 'scripts' + os.sep + 'clip_segmentation.py')
def caption_buddy(self):
import captionBuddy
#self.master.overrideredirect(False)
self.iconify()
#cb_root = tk.Tk()
cb_icon =PhotoImage(master=self,file = "resources/stableTuner_icon.png")
#cb_root.iconphoto(False, cb_icon)
app2 = captionBuddy.ImageBrowser(self)
app2.iconphoto(False, cb_icon)
#app = app2.mainloop()
#check if app2 is running
#self.master.overrideredirect(True)
#self.master.deiconify()
def aspect_ratio_mode_toggles(self, *args):
if self.use_aspect_ratio_bucketing_var.get() == 1:
self.with_prior_loss_preservation_var.set(0)
self.with_prior_loss_preservation_checkbox.configure(state="disabled")
self.aspect_ratio_bucketing_mode_label.configure(state="normal")
self.aspect_ratio_bucketing_mode_option_menu.configure(state="normal")
self.dynamic_bucketing_mode_label.configure(state="normal")
self.dynamic_bucketing_mode_option_menu.configure(state="normal")
else:
self.with_prior_loss_preservation_checkbox.configure(state="normal")
self.aspect_ratio_bucketing_mode_label.configure(state="disabled")
self.aspect_ratio_bucketing_mode_option_menu.configure(state="disabled")
self.dynamic_bucketing_mode_label.configure(state="disabled")
self.dynamic_bucketing_mode_option_menu.configure(state="disabled")
def download_dataset(self):
#get the dataset name
#import datasets
from git import Repo
folder = fd.askdirectory()
dataset_name = self.download_dataset_entry.get()
url = "https://huggingface.co./datasets/" + dataset_name if "/" not in dataset_name[0] else "/" + dataset_name
Repo.clone_from(url, folder)
#dataset = load_dataset(dataset_name)
#for each item in the dataset save it to a file in a folder with the name of the dataset
#create the folder
#get user to pick a folder
#git clone hugging face repo
#using
def interactive_generation_button(self):
#get state of button
button_state = self.play_interactive_generation_button_bool.get()
#flip the state of the button
self.play_interactive_generation_button_bool.set(not button_state)
#if the button is now true
if self.play_interactive_generation_button_bool.get():
#change the background of the button to green
#self.play_interactive_generation_button.configure()
pass
else:
#change the background of the button to normal
pass
#self.play_interactive_generation_button.configure(fg=self.dark_mode_title_var)
def play_save_image(self):
file = fd.asksaveasfilename(defaultextension=".png", filetypes=[("PNG", "*.png")])
#check if png in file name
if ".png" not in file and file != "" and self.play_current_image:
file = file + ".png"
self.play_current_image.save(file)
def generate_next_image(self):
self.play_generate_image(self.play_model_entry.get(), self.play_prompt_entry.get(), self.play_negative_prompt_entry.get(), self.play_seed_entry.get(), self.play_scheduler_variable.get(), int(self.play_resolution_slider_height.get()), int(self.play_resolution_slider_width.get()), self.play_cfg_slider.get(), self.play_steps_slider.get())
def play_generate_image(self, model, prompt, negative_prompt, seed, scheduler, sample_height, sample_width, cfg, steps):
import diffusers
import torch
from diffusers.utils.import_utils import is_xformers_available
self.play_height = sample_height
self.play_width = sample_width
#interactive = self.play_interactive_generation_button_bool.get()
#update generate image button text
if self.pipe is None or self.play_model_entry.get() != self.current_model:
if self.pipe is not None:
del self.pipe
#clear torch cache
torch.cuda.empty_cache()
self.play_generate_image_button["text"] = "Loading Model, Please stand by..."
#self.play_generate_image_button.configure(fg="red")
self.play_generate_image_button.update()
self.pipe = diffusers.DiffusionPipeline.from_pretrained(model,torch_dtype=torch.float16,safety_checker=None)
if isinstance(self.pipe, StableDiffusionPipeline):
self.play_model_variant = 'base'
if isinstance(self.pipe, StableDiffusionInpaintPipeline):
self.play_model_variant = 'inpainting'
if isinstance(self.pipe, StableDiffusionDepth2ImgPipeline):
self.play_model_variant = 'depth2img'
self.pipe.to('cuda')
self.current_model = model
if scheduler == 'DPMSolverMultistepScheduler':
scheduler = diffusers.DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
if scheduler == 'PNDMScheduler':
scheduler = diffusers.PNDMScheduler.from_config(self.pipe.scheduler.config)
if scheduler == 'DDIMScheduler':
scheduler = diffusers.DDIMScheduler.from_config(self.pipe.scheduler.config)
if scheduler == 'EulerAncestralDiscreteScheduler':
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
if scheduler == 'EulerDiscreteScheduler':
scheduler = diffusers.EulerDiscreteScheduler.from_config(self.pipe.scheduler.config)
self.pipe.scheduler = scheduler
if is_xformers_available():
try:
self.pipe.enable_xformers_memory_efficient_attention()
except Exception as e:
print(
"Could not enable memory efficient attention. Make sure xformers is installed"
f" correctly and a GPU is available: {e}"
)
def displayInterImg(step: int, timestep: int, latents: torch.FloatTensor):
#tensor to image
img = self.pipe.decode_latents(latents)
image = self.pipe.numpy_to_pil(img)[0]
#convert to PIL image
self.play_current_image = ctk.CTkImage(image)
#if step == 0:
#self.play_image_canvas.configure(width=self.play_width, height=self.play_height)
#if self.play_width < self.master.winfo_width():
#self.play_width = self.master.winfo_width()
#self.master.geometry(f"{self.play_width}x{self.play_height+300}")
#self.play_image = self.play_image_canvas.create_image(0, 0, anchor="nw", image=self.play_current_image)
#self.play_image_canvas.update()
#update image
self.play_image_canvas.itemconfig(self.play_image, image=self.play_current_image)
self.play_image_canvas.update()
with torch.autocast("cuda"), torch.inference_mode():
del self.play_current_image
torch.cuda.empty_cache()
if seed == "" or seed == " ":
seed = -1
seed = int(seed)
if seed == -1 or seed == 0 or self.play_keep_seed_var.get() == 0:
#random seed
seed = random.randint(0, 10000000)
self.play_seed_entry.delete(0, "end")
self.play_seed_entry.insert(0, seed)
generator = torch.Generator("cuda").manual_seed(seed)
#self.play_generate_image_button["text"] = "Generating, Please stand by..."
#self.play_generate_image_button.configure(fg=self.dark_mode_title_var)
#self.play_generate_image_button.update()
if self.play_model_variant == 'base':
image = self.pipe(prompt=prompt, negative_prompt=negative_prompt, height=int(sample_height), width=int(sample_width), guidance_scale=cfg, num_inference_steps=int(steps), generator=generator).images[0]
if self.play_model_variant == 'inpainting':
conditioning_image = torch.zeros(1, 3, int(sample_height), int(sample_width))
mask = torch.ones(1, 1, int(sample_height), int(sample_width))
image = self.pipe(prompt, conditioning_image, mask, height=int(sample_height), width=int(sample_width), guidance_scale=cfg, num_inference_steps=int(steps), generator=generator).images[0]
if self.play_model_variant == 'depth2img':
test_image = Image.new('RGB', (int(sample_width), int(sample_height)), (255, 255, 255))
image = self.pipe(prompt, image=test_image, height=int(sample_height), width=int(sample_width), guidance_scale=cfg, num_inference_steps=int(steps), strength=1.0, generator=generator).images[0]
self.play_current_image = image
#image is PIL image
if self.generation_window is None:
self.generation_window = GeneratedImagePreview(self)
self.generation_window.ingest_image(self.play_current_image)
#focus
self.generation_window.focus_set()
#image = ctk.CTkImage(image)
#self.play_image_canvas.configure(width=sample_width, height=sample_height)
#self.play_image_canvas.create_image(0, 0, anchor="nw", image=image)
#self.play_image_canvas.image = image
#resize app to fit image, add current height to image height
#if sample width is lower than current width, use current width
#if sample_width < self.master.winfo_width():
# sample_width = self.master.winfo_width()
#self.master.geometry(f"{sample_width}x{sample_height+self.tabsSizes[5][1]}")
#refresh the window
if self.play_save_image_button == None:
self.play_save_image_button = ctk.CTkButton(self.playground_frame_subframe, text="Save Image", command=self.play_save_image)
self.play_save_image_button.grid(row=10, column=2, columnspan=1, sticky="ew", padx=5, pady=5)
#self.master.update()
#self.play_generate_image_button["text"] = "Generate Image"
#normal text
#self.play_generate_image_button.configure(fg=self.dark_mode_text_var)
def convert_ckpt_to_diffusers(self,ckpt_path=None, output_path=None):
if ckpt_path is None:
ckpt_path = fd.askopenfilename(initialdir=os.getcwd(),title = "Select CKPT file",filetypes = (("ckpt files","*.ckpt"),("all files","*.*")))
if output_path is None:
#file dialog to save diffusers model
output_path = fd.askdirectory(initialdir=os.getcwd(), title="Select where to save Diffusers Model Directory")
version, prediction = self.get_sd_version(ckpt_path)
#self.convert_model_dialog = ctk.CTkToplevel(self, takefocus=True)
#self.convert_model_dialog.title("Converting model")
#label
#empty_label = ctk.CTkLabel(self.convert_model_dialog, text="")
#empty_label.pack()
#label = ctk.CTkLabel(self.convert_model_dialog, text="Converting CKPT to Diffusers. Please wait...")
#label.pack()
#self.convert_model_dialog.geometry("300x70")
#self.convert_model_dialog.resizable(False, False)
#self.convert_model_dialog.grab_set()
#self.convert_model_dialog.focus_set()
#self.update()
convert = converters.Convert_SD_to_Diffusers(ckpt_path,output_path,prediction_type=prediction,version=version)
#self.convert_model_dialog.destroy()
def convert_to_ckpt(self,model_path=None, output_path=None,name=None):
if model_path is None:
model_path = fd.askdirectory(initialdir=self.output_path_entry.get(), title="Select Diffusers Model Directory")
#check if model path has vae,unet,text_encoder,tokenizer,scheduler and args.json and model_index.json
if output_path is None:
output_path = fd.asksaveasfilename(initialdir=os.getcwd(),title = "Save CKPT file",filetypes = (("ckpt files","*.ckpt"),("all files","*.*")))
if not os.path.exists(model_path) and not os.path.exists(os.path.join(model_path,"vae")) and not os.path.exists(os.path.join(model_path,"unet")) and not os.path.exists(os.path.join(model_path,"text_encoder")) and not os.path.exists(os.path.join(model_path,"tokenizer")) and not os.path.exists(os.path.join(model_path,"scheduler")) and not os.path.exists(os.path.join(model_path,"args.json")) and not os.path.exists(os.path.join(model_path,"model_index.json")):
messagebox.showerror("Error", "Couldn't find model structure in path")
return
#check if ckpt in output path
if name != None:
output_path = os.path.join(output_path,name+".ckpt")
if not output_path.endswith(".ckpt") and output_path != "":
#add ckpt to output path
output_path = output_path + ".ckpt"
if not output_path or output_path == "":
return
self.convert_model_dialog = ctk.CTkToplevel(self)
self.convert_model_dialog.title("Converting model")
#label
empty_label = ctk.CTkLabel(self.convert_model_dialog, text="")
empty_label.pack()
label = ctk.CTkLabel(self.convert_model_dialog, text="Converting Diffusers to CKPT. Please wait...")
label.pack()
self.convert_model_dialog.geometry("300x70")
self.convert_model_dialog.resizable(False, False)
self.convert_model_dialog.grab_set()
self.convert_model_dialog.focus_set()
self.update()
converters.Convert_Diffusers_to_SD(model_path, output_path)
self.convert_model_dialog.destroy()
#messagebox.showinfo("Conversion Complete", "Conversion Complete")
def convert_to_safetensors(self,model_path=None, output_path=None,name=None):
if model_path is None:
model_path = fd.askdirectory(initialdir=self.output_path_entry.get(), title="Select Diffusers Model Directory")
#check if model path has vae,unet,text_encoder,tokenizer,scheduler and args.json and model_index.json
if output_path is None:
output_path = fd.asksaveasfilename(initialdir=os.getcwd(),title = "Save Safetensors file",filetypes = (("safetensors files","*.safetensors"),("all files","*.*")))
if not os.path.exists(model_path) and not os.path.exists(os.path.join(model_path,"vae")) and not os.path.exists(os.path.join(model_path,"unet")) and not os.path.exists(os.path.join(model_path,"text_encoder")) and not os.path.exists(os.path.join(model_path,"tokenizer")) and not os.path.exists(os.path.join(model_path,"scheduler")) and not os.path.exists(os.path.join(model_path,"args.json")) and not os.path.exists(os.path.join(model_path,"model_index.json")):
messagebox.showerror("Error", "Couldn't find model structure in path")
return
#check if ckpt in output path
if name != None:
output_path = os.path.join(output_path,name+".safetensors")
if not output_path.endswith(".safetensors") and output_path != "":
#add ckpt to output path
output_path = output_path + ".safetensors"
if not output_path or output_path == "":
return
self.convert_model_dialog = ctk.CTkToplevel(self)
self.convert_model_dialog.title("Converting model")
#label
empty_label = ctk.CTkLabel(self.convert_model_dialog, text="")
empty_label.pack()
label = ctk.CTkLabel(self.convert_model_dialog, text="Converting Diffusers to CKPT. Please wait...")
label.pack()
self.convert_model_dialog.geometry("300x70")
self.convert_model_dialog.resizable(False, False)
self.convert_model_dialog.grab_set()
self.convert_model_dialog.focus_set()
self.update()
converters.Convert_Diffusers_to_SD(model_path, output_path)
self.convert_model_dialog.destroy()
#messagebox.showinfo("Conversion Complete", "Conversion Complete")
#function to act as a callback when the user adds a new concept data path to generate a new preview image
def update_preview_image(self, event):
#check if entry has changed
indexOfEntry = 0
for concept_entry in self.concept_entries:
if event.widget in concept_entry:
indexOfEntry = self.concept_entries.index(concept_entry)
#stop the loop
break
#get the path from the entry
path = event.widget.get()
canvas = self.preview_images[indexOfEntry][0]
image_container = self.preview_images[indexOfEntry][1]
icon = 'resources/stableTuner_icon.png'
#create a photoimage object of the image in the path
icon = Image.open(icon)
#resize the image
image = icon.resize((150, 150), Image.Resampling.LANCZOS)
if path != "":
if os.path.exists(path):
files = os.listdir(path)
for i in range(4):
#get an image from the path
import random
#filter files for images
files = [f for f in files if f.endswith(".jpg") or f.endswith(".png") or f.endswith(".jpeg")]
if len(files) != 0:
rand = random.choice(files)
image_path = os.path.join(path,rand)
#remove image_path from files
if len(files) > 4:
files.remove(rand)
#files.pop(image_path)
#open the image
#print(image_path)
image_to_add = Image.open(image_path)
#resize the image to 38x38
#resize to 150x150 closest to the original aspect ratio
image_to_add.thumbnail((150, 150), Image.Resampling.LANCZOS)
#decide where to put the image
if i == 0:
#top left
image.paste(image_to_add, (0, 0))
elif i == 1:
#top right
image.paste(image_to_add, (76, 0))
elif i == 2:
#bottom left
image.paste(image_to_add, (0, 76))
elif i == 3:
#bottom right
image.paste(image_to_add, (76, 76))
#convert the image to a photoimage
#image.show()
newImage=ctk.CTkImage(image)
self.preview_images[indexOfEntry][2] = newImage
canvas.itemconfig(image_container, image=newImage)
def remove_new_concept(self):
#get the last concept widget
if len(self.concept_widgets) > 0:
concept_widget = self.concept_widgets[-1]
#remove it from the list
self.concept_widgets.remove(concept_widget)
#destroy the widget
concept_widget.destroy()
#repack the widgets
#self.repack_concepts()
def add_new_concept(self,concept=None):
#create a new concept
#for concept in self.concept_widgets check if concept was deleted
#if it was, remove it from the list
row=0
column=len(self.concept_widgets)
if len(self.concept_widgets) > 6:
row=1
concept_widget = ConceptWidget(self.data_frame_concepts_subframe, concept,width=100,height=100)
width=100
height=100
column=len(self.concept_widgets)-7
if len(self.concept_widgets) > 13:
row=2
concept_widget = ConceptWidget(self.data_frame_concepts_subframe, concept,width=100,height=100)
height=100
width=100
column=len(self.concept_widgets)-14
if len(self.concept_widgets) > 20:
messagebox.showerror("Error", "You can only have 21 concepts")
return
else:
concept_widget = ConceptWidget(self.data_frame_concepts_subframe, concept,width=100,height=100)
#print(row)
concept_widget.grid(row=row, column=column, sticky="e",padx=13, pady=10)
self.concept_widgets.append(concept_widget)
self.update()
#print(len(self.concept_widgets))
#if row == 2:
# for concept in self.concept_widgets:
# concept.resize_widget(width, height)
def add_concept(self, inst_prompt_val=None, class_prompt_val=None, inst_data_path_val=None, class_data_path_val=None, do_not_balance_val=False):
#create a title for the new concept
concept_title = ctk.CTkLabel(self.data_frame_concepts_subframe, text="Concept " + str(len(self.concept_labels)+1), font=("Helvetica", 10, "bold"), bg_color='#333333')
concept_title.grid(row=3 + (len(self.concept_labels)*6), column=0, sticky="nsew")
#create instance prompt label
ins_prompt_label = ctk.CTkLabel(self.data_frame_concepts_subframe, text="Token/Prompt", bg_color='#333333')
ins_prompt_label_ttp = CreateToolTip(ins_prompt_label, "The token for the concept, will be ignored if use image names as captions is checked.")
ins_prompt_label.grid(row=4 + (len(self.concept_labels)*6), column=0, sticky="nsew")
#create instance prompt entry
ins_prompt_entry = ctk.CTkEntry(self.data_frame_concepts_subframe, bg_color='#333333')
ins_prompt_entry.grid(row=4 + (len(self.concept_labels)*6), column=1, sticky="nsew")
if inst_prompt_val != None:
ins_prompt_entry.insert(0, inst_prompt_val)
#create class prompt label
class_prompt_label = ctk.CTkLabel(self.data_frame_concepts_subframe, text="Class Prompt", bg_color='#333333')
class_prompt_label_ttp = CreateToolTip(class_prompt_label, "The prompt will be used to generate class images and train the class images if added to dataset")
class_prompt_label.grid(row=5 + (len(self.concept_labels)*6), column=0, sticky="nsew")
#create class prompt entry
class_prompt_entry = ctk.CTkEntry(self.data_frame_concepts_subframe,width=50, bg_color='#333333')
class_prompt_entry.grid(row=5 + (len(self.concept_labels)*6), column=1, sticky="nsew")
if class_prompt_val != None:
class_prompt_entry.insert(0, class_prompt_val)
#create instance data path label
ins_data_path_label = ctk.CTkLabel(self.data_frame_concepts_subframe, text="Training Data Directory", bg_color='#333333')
ins_data_path_label_ttp = CreateToolTip(ins_data_path_label, "The path to the folder containing the concept's images.")
ins_data_path_label.grid(row=6 + (len(self.concept_labels)*6), column=0, sticky="nsew")
#create instance data path entry
ins_data_path_entry = ctk.CTkEntry(self.data_frame_concepts_subframe,width=50, bg_color='#333333')
ins_data_path_entry.bind("<FocusOut>", self.update_preview_image)
#bind to insert
ins_data_path_entry.grid(row=6 + (len(self.concept_labels)*6), column=1, sticky="nsew")
if inst_data_path_val != None:
#focus on the entry
ins_data_path_entry.insert(0, inst_data_path_val)
ins_data_path_entry.focus_set()
#focus on main window
self.focus_set()
#add a button to open a file dialog to select the instance data path
ins_data_path_file_dialog_button = ctk.CTkButton(self.data_frame_concepts_subframe, text="...", command=lambda: self.open_file_dialog(ins_data_path_entry), bg_color='#333333')
ins_data_path_file_dialog_button.grid(row=6 + (len(self.concept_labels)*6), column=2, sticky="nsew")
#create class data path label
class_data_path_label = ctk.CTkLabel(self.data_frame_concepts_subframe, text="Class Data Directory", bg_color='#333333')
class_data_path_label_ttp = CreateToolTip(class_data_path_label, "The path to the folder containing the concept's class images.")
class_data_path_label.grid(row=7 + (len(self.concept_labels)*6), column=0, sticky="nsew")
#add a button to open a file dialog to select the class data path
class_data_path_file_dialog_button = ctk.CTkButton(self.data_frame_concepts_subframe, text="...", command=lambda: self.open_file_dialog(class_data_path_entry), bg_color='#333333')
class_data_path_file_dialog_button.grid(row=7 + (len(self.concept_labels)*6), column=2, sticky="nsew")
#create class data path entry
class_data_path_entry = ctk.CTkEntry(self.data_frame_concepts_subframe, bg_color='#333333')
class_data_path_entry.grid(row=7 + (len(self.concept_labels)*6), column=1, sticky="nsew")
if class_data_path_val != None:
class_data_path_entry.insert(0, class_data_path_val)
#add a checkbox to do not balance dataset
do_not_balance_dataset_var = tk.IntVar()
#label for checkbox
do_not_balance_dataset_label = ctk.CTkLabel(self.data_frame_concepts_subframe, text="Do not balance dataset", bg_color='#333333')
do_not_balance_dataset_label_ttp = CreateToolTip(do_not_balance_dataset_label, "If checked, the dataset will not be balanced. this settings overrides the global auto balance setting, if there's a concept you'd like to train without balance while the others will.")
do_not_balance_dataset_label.grid(row=8 + (len(self.concept_labels)*6), column=0, sticky="nsew")
do_not_balance_dataset_checkbox = ctk.CTkSwitch(self.data_frame_concepts_subframe, variable=do_not_balance_dataset_var, bg_color='#333333')
do_not_balance_dataset_checkbox.grid(row=8 + (len(self.concept_labels)*6), column=1, sticky="nsew")
do_not_balance_dataset_var.set(0)
#create a preview of the images in the path on the right side of the concept
#create a frame to hold the images
#empty column to separate the images from the rest of the concept
#sep = ctk.CTkLabel(self.data_frame_concepts_subframe,padx=3, text="").grid(row=4 + (len(self.concept_labels)*6), column=3, sticky="nsew", bg_color='#333333')
image_preview_frame = ctk.CTkFrame(self.data_frame_concepts_subframe)
image_preview_frame.grid(row=4 + (len(self.concept_labels)*6), column=4, rowspan=4, sticky="ne")
#create a label for the images
#image_preview_label = ctk.CTkLabel(image_preview_frame, text="Image Preview")
#image_preview_label.grid(row=0, column=0, sticky="nsew")
#create a canvas to hold the images
image_preview_canvas = tk.Canvas(image_preview_frame)
#flat border
image_preview_canvas.configure(border=0, relief='flat', highlightthickness=0)
#canvas size is 100x100
image_preview_canvas.configure(width=150, height=150, bg='#333333')
image_preview_canvas.grid(row=0, column=0, sticky="nsew")
#debug test, image preview just white
#if there's a path in the entry, show the images in the path
#grab stableTuner_icon.png from the resources folder
icon = 'resources/stableTuner_icon.png'
#create a photoimage object of the image in the path
icon = Image.open(icon)
#resize the image
image = icon.resize((150, 150), Image.Resampling.LANCZOS)
image_preview = ImageTk.PhotoImage(image)
if inst_data_path_val != None:
if os.path.exists(inst_data_path_val):
del image_preview
#get 4 images from the path
#create a host image
image = Image.new("RGB", (150, 150), "white")
files = os.listdir(inst_data_path_val)
if len(files) > 0:
for i in range(4):
#get an image from the path
import random
#filter files for images
files = [f for f in files if f.endswith(".jpg") or f.endswith(".png") or f.endswith(".jpeg")]
rand = random.choice(files)
image_path = os.path.join(inst_data_path_val,rand)
#remove image_path from files
if len(files) > 4:
files.remove(rand)
#files.pop(image_path)
#open the image
#print(image_path)
image_to_add = Image.open(image_path)
#resize the image to 38x38
#resize to 150x150 closest to the original aspect ratio
image_to_add.thumbnail((150, 150), Image.Resampling.LANCZOS)
#decide where to put the image
if i == 0:
#top left
image.paste(image_to_add, (0, 0))
elif i == 1:
#top right
image.paste(image_to_add, (76, 0))
elif i == 2:
#bottom left
image.paste(image_to_add, (0, 76))
elif i == 3:
#bottom right
image.paste(image_to_add, (76, 76))
#convert the image to a photoimage
#image.show()
image_preview = ctk.CTkImage(image)
#add the image to the canvas
image_container = image_preview_canvas.create_image(0, 0, anchor="nw", image=image_preview)
self.preview_images.append([image_preview_canvas,image_container,image_preview])
image_preview_frame.update()
if do_not_balance_val != False:
do_not_balance_dataset_var.set(1)
#combine all the entries into a list
concept_entries = [ins_prompt_entry, class_prompt_entry, ins_data_path_entry, class_data_path_entry,do_not_balance_dataset_var,do_not_balance_dataset_checkbox]
for i in concept_entries[:4]:
i.bind("<Button-3>", self.create_right_click_menu)
#add the list to the list of concept entries
self.concept_entries.append(concept_entries)
#add the title to the list of concept titles
self.concept_labels.append([concept_title, ins_prompt_label, class_prompt_label, ins_data_path_label, class_data_path_label,do_not_balance_dataset_label,image_preview_frame])
self.concepts.append({"instance_prompt": ins_prompt_entry, "class_prompt": class_prompt_entry, "instance_data_dir": ins_data_path_entry, "class_data_dir": class_data_path_entry,'do_not_balance': do_not_balance_dataset_var})
self.concept_file_dialog_buttons.append([ins_data_path_file_dialog_button, class_data_path_file_dialog_button])
#self.canvas.configure(scrollregion=self.canvas.bbox("all"))
def get_sd_version(self,file_path):
import torch
if 'ckpt' in file_path:
checkpoint = torch.load(file_path, map_location="cpu")
else:
from safetensors.torch import load_file
checkpoint = load_file(file_path)
#checkpoint = torch.load(file_path)
answer = messagebox.askyesno("V-Model?", "Is this model using V-Parameterization? (based on SD2.x 768 model)")
if answer == True:
prediction = "vprediction"
else:
prediction = "epsilon"
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if "state_dict" in checkpoint.keys():
checkpoint = checkpoint["state_dict"]
if key_name in checkpoint and checkpoint[key_name].shape[-1] == 1024:
version = "v2"
else:
version = "v1"
del checkpoint
return version, prediction
def choose_model(self):
"""Opens a file dialog and to choose either a model or a model folder."""
#open file dialog and show only ckpt and json files and folders
file_path = fd.askopenfilename(filetypes=[("Model", "*.ckpt"), ("Model", "*.json"), ("Model", "*.safetensors")])
#file_path = fd.askopenfilename() model_index.json
if file_path == "":
return
#check if the file is a json file
if file_path.endswith("model_index.json"):
#check if the file is a model index file
#check if folder has folders for: vae, unet, tokenizer, text_encoder
model_dir = os.path.dirname(file_path)
for folder in self.required_folders:
if not os.path.isdir(os.path.join(model_dir, folder)):
#show error message
messagebox.showerror("Error", "The selected model is missing the {} folder.".format(folder))
return
file_path = model_dir
#if the file is not a model index file
if file_path.endswith(".ckpt") or file_path.endswith(".safetensors"):
sd_file = file_path
version, prediction = self.get_sd_version(sd_file)
#create a directory under the models folder with the name of the ckpt file
model_name = os.path.basename(file_path).split(".")[0]
#get the path of the script
script_path = os.getcwd()
#get the path of the models folder
models_path = os.path.join(script_path, "models")
#if no models_path exists, create it
if not os.path.isdir(models_path):
os.mkdir(models_path)
#create the path of the new model folder
model_path = os.path.join(models_path, model_name)
#check if the model folder already exists
if os.path.isdir(model_path) and os.path.isfile(os.path.join(model_path, "model_index.json")):
file_path = model_path
else:
#create the model folder
if os.path.isdir(model_path):
shutil.rmtree(model_path)
os.mkdir(model_path)
#converter
#show a dialog to inform the user that the model is being converted
self.convert_model_dialog = ctk.CTkToplevel(self)
self.convert_model_dialog.title("Converting model")
#label
empty_label = ctk.CTkLabel(self.convert_model_dialog, text="")
empty_label.pack()
label = ctk.CTkLabel(self.convert_model_dialog, text="Converting CKPT to Diffusers. Please wait...")
label.pack()
self.convert_model_dialog.geometry("300x70")
self.convert_model_dialog.resizable(False, False)
self.convert_model_dialog.grab_set()
self.convert_model_dialog.focus_set()
self.update()
convert = converters.Convert_SD_to_Diffusers(sd_file,model_path,prediction_type=prediction,version=version)
self.convert_model_dialog.destroy()
file_path = model_path
self.input_model_path_entry.delete(0, tk.END)
self.input_model_path_entry.insert(0, file_path)
def open_file_dialog(self, entry):
"""Opens a file dialog and sets the entry to the selected file."""
indexOfEntry = None
file_path = fd.askdirectory()
#get the entry name
entry.delete(0, tk.END)
entry.insert(0, file_path)
#focus on the entry
entry.focus_set()
#unset the focus on the button
#self.master.focus_set()
def save_concept_to_json(self,filename=None,preMadeConcepts=None):
#dialog box to select the file to save to
if filename == None:
file = fd.asksaveasfile(mode='w', defaultextension=".json", filetypes=[("JSON", "*.json")])
#check if file has json extension
if 'json' not in file.name:
file.name = file.name + '.json'
else:
file = open(filename, 'w')
if file != None:
if preMadeConcepts == None:
concepts = []
for widget in self.concept_widgets:
concept = widget.concept
concept_dict = {'instance_prompt' : concept.concept_name, 'class_prompt' : concept.concept_class_name, 'instance_data_dir' : concept.concept_path, 'class_data_dir' : concept.concept_class_path,'flip_p' : concept.flip_p, 'do_not_balance' : concept.concept_do_not_balance, 'use_sub_dirs' : concept.process_sub_dirs}
concepts.append(concept_dict)
if file != None:
#write the json to the file
json.dump(concepts, file, indent=4)
#close the file
file.close()
else:
json.dump(preMadeConcepts, file, indent=4)
#close the file
file.close()
def load_concept_from_json(self):
#
#dialog
concept_json = fd.askopenfilename(title = "Select file",filetypes = (("json files","*.json"),("all files","*.*")))
for i in range(len(self.concept_widgets)):
self.remove_new_concept()
self.concept_entries = []
self.concept_labels = []
self.concepts = []
with open(concept_json, "r") as f:
concept_json = json.load(f)
for concept in concept_json:
#print(concept)
if 'flip_p' not in concept:
concept['flip_p'] = ''
concept = Concept(concept_name=concept["instance_prompt"], class_name=concept["class_prompt"], concept_path=concept["instance_data_dir"], class_path=concept["class_data_dir"],flip_p=concept['flip_p'],balance_dataset=concept["do_not_balance"], process_sub_dirs=concept["use_sub_dirs"])
self.add_new_concept(concept) #self.canvas.configure(scrollregion=self.canvas.bbox("all"))
self.update()
return concept_json
def remove_concept(self):
#remove the last concept
if len(self.concept_labels) > 0:
for entry in self.concept_entries[-1]:
#if the entry is an intvar
if isinstance(entry, tk.IntVar):
#delete the entry
del entry
else:
entry.destroy()
for label in self.concept_labels[-1]:
label.destroy()
for button in self.concept_file_dialog_buttons[-1]:
button.destroy()
self.concept_entries.pop()
self.concept_labels.pop()
self.concepts.pop()
self.concept_file_dialog_buttons.pop()
self.preview_images.pop()
#self.canvas.configure(scrollregion=self.canvas.bbox("all"))
def remove_new_concept(self):
#remove the last concept
#print(self.concept_widgets)
if len(self.concept_widgets) > 0:
self.concept_widgets[-1].destroy()
self.concept_widgets.pop()
#self.preview_images.pop()
#self.canvas.configure(scrollregion=self.canvas.bbox("all"))
def toggle_telegram_settings(self):
#print(self.send_telegram_updates_var.get())
if self.send_telegram_updates_var.get() == 1:
self.telegram_token_label.configure(state="normal")
self.telegram_token_entry.configure(state="normal")
self.telegram_chat_id_label.configure(state="normal")
self.telegram_chat_id_entry.configure(state="normal")
else:
self.telegram_token_label.configure(state="disabled")
self.telegram_token_entry.configure(state="disabled")
self.telegram_chat_id_label.configure(state="disabled")
self.telegram_chat_id_entry.configure(state="disabled")
def add_controlled_seed_sample(self,value=""):
if len(self.controlled_seed_sample_labels) <= 4:
self.controlled_seed_sample_labels.append(ctk.CTkLabel(self.sampling_frame_subframe,bg_color='transparent' ,text="Controlled Seed Sample " + str(len(self.controlled_seed_sample_labels)+1)))
self.controlled_seed_sample_labels[-1].grid(row=self.controlled_sample_row + len(self.sample_prompts) + len(self.controlled_seed_sample_labels), column=2, padx=10, pady=5,sticky="nwes")
#create entry
entry = ctk.CTkEntry(self.sampling_frame_subframe,width=250)
entry.bind("<Button-3>",self.create_right_click_menu)
self.controlled_seed_sample_entries.append(entry)
self.controlled_seed_sample_entries[-1].grid(row=self.controlled_sample_row + len(self.sample_prompts) + len(self.controlled_seed_sample_entries), column=3, padx=10, pady=5,sticky="w")
if value != "":
self.controlled_seed_sample_entries[-1].insert(0, value)
self.add_controlled_seed_to_sample.append(value)
#self.canvas.configure(scrollregion=self.canvas.bbox("all"))
def remove_controlled_seed_sample(self):
#get the entry and label to remove
if len(self.controlled_seed_sample_labels) > 0:
self.controlled_seed_sample_labels[-1].destroy()
self.controlled_seed_sample_labels.pop()
self.controlled_seed_sample_entries[-1].destroy()
self.controlled_seed_sample_entries.pop()
self.add_controlled_seed_to_sample.pop()
#self.canvas.configure(scrollregion=self.canvas.bbox("all"))
def remove_sample_prompt(self):
if len(self.sample_prompt_labels) > 0:
#remove the last label and entry
#get entry value
self.sample_prompt_labels[-1].destroy()
self.sample_prompt_entries[-1].destroy()
#remove the last label and entry from the lists
self.sample_prompt_labels.pop()
self.sample_prompt_entries.pop()
#remove the last value from the list
self.sample_prompts.pop()
#print(self.sample_prompts)
#print(self.sample_prompt_entries)
#self.canvas.configure(scrollregion=self.canvas.bbox("all"))
for i in self.controlled_seed_buttons:
#push to next row
i.grid(row=i.grid_info()["row"] - 1, column=i.grid_info()["column"], sticky="nsew")
for i in self.controlled_seed_sample_labels:
#push to next row
i.grid(row=i.grid_info()["row"] - 1, column=i.grid_info()["column"], sticky="nsew")
for i in self.controlled_seed_sample_entries:
#push to next row
i.grid(row=i.grid_info()["row"] - 1, column=i.grid_info()["column"], sticky="nsew")
def add_sample_prompt(self,value=""):
#add a new label and entry
if len(self.sample_prompt_entries) <= 4:
self.sample_prompt_labels.append(ctk.CTkLabel(self.sampling_frame_subframe, text="Sample Prompt " + str(len(self.sample_prompt_labels)+1),bg_color='transparent'))
self.sample_prompt_labels[-1].grid(row=self.sample_prompt_row + len(self.sample_prompt_labels) - 1, column=2, padx=10, pady=5,sticky="nsew")
entry = ctk.CTkEntry(self.sampling_frame_subframe,width=250)
entry.bind("<Button-3>", self.create_right_click_menu)
self.sample_prompt_entries.append(entry)
self.sample_prompt_entries[-1].grid(row=self.sample_prompt_row + len(self.sample_prompt_labels) - 1, column=3, padx=10, pady=5,sticky="nsew")
if value != "":
self.sample_prompt_entries[-1].insert(0, value)
#update the sample prompts list
self.sample_prompts.append(value)
for i in self.controlled_seed_buttons:
#push to next row
i.grid(row=i.grid_info()["row"] + 1, column=i.grid_info()["column"], sticky="nsew")
for i in self.controlled_seed_sample_labels:
#push to next row
i.grid(row=i.grid_info()["row"] + 1, column=i.grid_info()["column"], sticky="nsew")
for i in self.controlled_seed_sample_entries:
#push to next row
i.grid(row=i.grid_info()["row"] + 1, column=i.grid_info()["column"], sticky="nsew")
#print(self.sample_prompts)
#print(self.sample_prompt_entries)
#update canvas scroll region
#self.canvas.configure(scrollregion=self.canvas.bbox("all"))
def update_sample_prompts(self):
#update the sample prompts list
self.sample_prompts = []
for i in range(len(self.sample_prompt_entries)):
self.sample_prompts.append(self.sample_prompt_entries[i].get())
def update_controlled_seed_sample(self):
#update the sample prompts list
self.add_controlled_seed_to_sample = []
for i in range(len(self.controlled_seed_sample_entries)):
self.add_controlled_seed_to_sample.append(self.controlled_seed_sample_entries[i].get())
self.update()
def update_concepts(self):
#update the concepts list
#if the first index is a dict
if isinstance(self.concepts, dict):
return
self.concepts = []
for i in range(len(self.concept_widgets)):
concept = self.concept_widgets[i].concept
self.concepts.append({'instance_prompt' : concept.concept_name, 'class_prompt' : concept.concept_class_name, 'instance_data_dir' : concept.concept_path, 'class_data_dir' : concept.concept_class_path,'flip_p' : concept.flip_p, 'do_not_balance' : concept.concept_do_not_balance, 'use_sub_dirs' : concept.process_sub_dirs})
def save_config(self, config_file=None):
#save the configure file
import json
#create a dictionary of all the variables
#ask the user for a file name
if config_file == None:
file_name = fd.asksaveasfilename(title = "Select file",filetypes = (("json files","*.json"),("all files","*.*")))
#check if json in file name
if ".json" not in file_name:
file_name += ".json"
else:
file_name = config_file
configure = {}
self.update_controlled_seed_sample()
self.update_sample_prompts()
self.update_concepts()
configure["concepts"] = self.concepts
#print(self.concepts)
configure["sample_prompts"] = self.sample_prompts
configure['add_controlled_seed_to_sample'] = self.add_controlled_seed_to_sample
configure["model_path"] = self.input_model_path_entry.get()
configure["vae_path"] = self.vae_model_path_entry.get()
configure["output_path"] = self.output_path_entry.get()
configure["send_telegram_updates"] = self.send_telegram_updates_var.get()
configure["telegram_token"] = self.telegram_token_entry.get()
configure["telegram_chat_id"] = self.telegram_chat_id_entry.get()
configure["resolution"] = self.resolution_var.get()
configure["batch_size"] = self.train_batch_size_var.get()
configure["train_epocs"] = self.train_epochs_entry.get()
configure["mixed_precision"] = self.mixed_precision_var.get()
configure["use_8bit_adam"] = self.use_8bit_adam_var.get()
configure["use_gradient_checkpointing"] = self.use_gradient_checkpointing_var.get()
configure["accumulation_steps"] = self.gradient_accumulation_steps_var.get()
configure["learning_rate"] = self.learning_rate_entry.get()
configure["warmup_steps"] = self.num_warmup_steps_entry.get()
configure["learning_rate_scheduler"] = self.learning_rate_scheduler_var.get()
#configure["use_latent_cache"] = self.use_latent_cache_var.get()
#configure["save_latent_cache"] = self.save_latent_cache_var.get()
configure["regenerate_latent_cache"] = self.regenerate_latent_cache_var.get()
configure["train_text_encoder"] = self.train_text_encoder_var.get()
configure["with_prior_loss_preservation"] = self.with_prior_loss_preservation_var.get()
configure["prior_loss_preservation_weight"] = self.prior_loss_preservation_weight_entry.get()
configure["use_image_names_as_captions"] = self.use_image_names_as_captions_var.get()
configure["shuffle_captions"] = self.shuffle_captions_var.get()
configure["auto_balance_concept_datasets"] = self.auto_balance_dataset_var.get()
configure["add_class_images_to_dataset"] = self.add_class_images_to_dataset_var.get()
configure["number_of_class_images"] = self.number_of_class_images_entry.get()
configure["save_every_n_epochs"] = self.save_every_n_epochs_entry.get()
configure["number_of_samples_to_generate"] = self.number_of_samples_to_generate_entry.get()
configure["sample_height"] = self.sample_height_entry.get()
configure["sample_width"] = self.sample_width_entry.get()
configure["sample_random_aspect_ratio"] = self.sample_random_aspect_ratio_var.get()
configure['sample_on_training_start'] = self.sample_on_training_start_var.get()
configure['concepts'] = self.concepts
configure['aspect_ratio_bucketing'] = self.use_aspect_ratio_bucketing_var.get()
configure['seed'] = self.seed_entry.get()
configure['dataset_repeats'] = self.dataset_repeats_entry.get()
configure['limit_text_encoder_training'] = self.limit_text_encoder_entry.get()
configure['use_text_files_as_captions'] = self.use_text_files_as_captions_var.get()
configure['ckpt_version'] = self.ckpt_sd_version
configure['convert_to_ckpt_after_training'] = self.convert_to_ckpt_after_training_var.get()
configure['execute_post_conversion'] = self.convert_to_ckpt_after_training_var.get()
configure['disable_cudnn_benchmark'] = self.disable_cudnn_benchmark_var.get()
configure['sample_step_interval'] = self.sample_step_interval_entry.get()
configure['conditional_dropout'] = self.conditional_dropout_entry.get()
configure["clip_penultimate"] = self.clip_penultimate_var.get()
configure['use_ema'] = self.use_ema_var.get()
configure['aspect_ratio_bucketing_mode'] = self.aspect_ratio_bucketing_mode_var.get()
configure['dynamic_bucketing_mode'] = self.dynamic_bucketing_mode_var.get()
configure['model_variant'] = self.model_variant_var.get()
configure['masked_training'] = self.masked_training_var.get()
configure['normalize_masked_area_loss'] = self.normalize_masked_area_loss_var.get()
configure['unmasked_probability'] = self.unmasked_probability_var.get()
configure['max_denoising_strength'] = self.max_denoising_strength_var.get()
configure['fallback_mask_prompt'] = self.fallback_mask_prompt_entry.get()
configure['attention'] = self.attention_var.get()
configure['batch_prompt_sampling'] = int(self.batch_prompt_sampling_optionmenu_var.get())
configure['shuffle_dataset_per_epoch'] = self.shuffle_dataset_per_epoch_var.get()
configure['use_offset_noise'] = self.use_offset_noise_var.get()
configure['offset_noise_weight'] = self.offset_noise_weight_entry.get()
configure['use_gan'] = self.use_gan_var.get()
configure['gan_weight'] = self.gan_weight_entry.get()
configure['use_lion'] = self.use_lion_var.get()
#save the configure file
#if the file exists, delete it
if os.path.exists(file_name):
os.remove(file_name)
with open(file_name, "w",encoding='utf-8') as f:
json.dump(configure, f, indent=4)
f.close()
def load_config(self,file_name=None):
#load the configure file
#ask the user for a file name
if file_name == None:
file_name = fd.askopenfilename(title = "Select file",filetypes = (("json files","*.json"),("all files","*.*")))
if file_name == "":
return
#load the configure file
with open(file_name, "r",encoding='utf-8') as f:
configure = json.load(f)
#load concepts
try:
for i in range(len(self.concept_widgets)):
self.remove_new_concept()
self.concept_entries = []
self.concept_labels = []
self.concepts = []
for i in range(len(configure["concepts"])):
inst_prompt = configure["concepts"][i]["instance_prompt"]
class_prompt = configure["concepts"][i]["class_prompt"]
inst_data_dir = configure["concepts"][i]["instance_data_dir"]
class_data_dir = configure["concepts"][i]["class_data_dir"]
if 'flip_p' not in configure["concepts"][i]:
print(configure["concepts"][i].keys())
configure["concepts"][i]['flip_p'] = ''
flip_p = configure["concepts"][i]["flip_p"]
balance_dataset = configure["concepts"][i]["do_not_balance"]
process_sub_dirs = configure["concepts"][i]["use_sub_dirs"]
concept = Concept(concept_name=inst_prompt, class_name=class_prompt, concept_path=inst_data_dir, class_path=class_data_dir,flip_p=flip_p,balance_dataset=balance_dataset,process_sub_dirs=process_sub_dirs)
self.add_new_concept(concept)
except Exception as e:
print(e)
pass
#destroy all the current labels and entries
for i in range(len(self.sample_prompt_labels)):
self.sample_prompt_labels[i].destroy()
self.sample_prompt_entries[i].destroy()
for i in range(len(self.controlled_seed_sample_labels)):
self.controlled_seed_sample_labels[i].destroy()
self.controlled_seed_sample_entries[i].destroy()
self.sample_prompt_labels = []
self.sample_prompt_entries = []
self.controlled_seed_sample_labels = []
self.controlled_seed_sample_entries = []
#set the variables
for i in range(len(configure["sample_prompts"])):
self.add_sample_prompt(value=configure["sample_prompts"][i])
for i in range(len(configure['add_controlled_seed_to_sample'])):
self.add_controlled_seed_sample(value=configure['add_controlled_seed_to_sample'][i])
self.input_model_path_entry.delete(0, tk.END)
self.input_model_path_entry.insert(0, configure["model_path"])
self.vae_model_path_entry.delete(0, tk.END)
self.vae_model_path_entry.insert(0, configure["vae_path"])
self.output_path_entry.delete(0, tk.END)
self.output_path_entry.insert(0, configure["output_path"])
self.send_telegram_updates_var.set(configure["send_telegram_updates"])
if configure["send_telegram_updates"]:
self.telegram_token_entry.configure(state='normal')
self.telegram_chat_id_entry.configure(state='normal')
self.telegram_token_label.configure(state='normal')
self.telegram_chat_id_label.configure(state='normal')
self.telegram_token_entry.delete(0, tk.END)
self.telegram_token_entry.insert(0, configure["telegram_token"])
self.telegram_chat_id_entry.delete(0, tk.END)
self.telegram_chat_id_entry.insert(0, configure["telegram_chat_id"])
self.resolution_var.set(configure["resolution"])
self.train_batch_size_var.set(configure["batch_size"])
self.train_epochs_entry.delete(0, tk.END)
self.train_epochs_entry.insert(0, configure["train_epocs"])
self.mixed_precision_var.set(configure["mixed_precision"])
self.use_8bit_adam_var.set(configure["use_8bit_adam"])
self.use_gradient_checkpointing_var.set(configure["use_gradient_checkpointing"])
self.gradient_accumulation_steps_var.set(configure["accumulation_steps"])
self.learning_rate_entry.delete(0, tk.END)
self.learning_rate_entry.insert(0, configure["learning_rate"])
self.num_warmup_steps_entry.delete(0, tk.END)
self.num_warmup_steps_entry.insert(0, configure["warmup_steps"])
self.learning_rate_scheduler_var.set(configure["learning_rate_scheduler"])
#self.use_latent_cache_var.set(configure["use_latent_cache"])
#self.save_latent_cache_var.set(configure["save_latent_cache"])
self.regenerate_latent_cache_var.set(configure["regenerate_latent_cache"])
self.train_text_encoder_var.set(configure["train_text_encoder"])
self.with_prior_loss_preservation_var.set(configure["with_prior_loss_preservation"])
self.prior_loss_preservation_weight_entry.delete(0, tk.END)
self.prior_loss_preservation_weight_entry.insert(0, configure["prior_loss_preservation_weight"])
self.use_image_names_as_captions_var.set(configure["use_image_names_as_captions"])
self.shuffle_captions_var.set(configure["shuffle_captions"])
self.auto_balance_dataset_var.set(configure["auto_balance_concept_datasets"])
self.add_class_images_to_dataset_var.set(configure["add_class_images_to_dataset"])
self.number_of_class_images_entry.delete(0, tk.END)
self.number_of_class_images_entry.insert(0, configure["number_of_class_images"])
self.save_every_n_epochs_entry.delete(0, tk.END)
self.save_every_n_epochs_entry.insert(0, configure["save_every_n_epochs"])
self.number_of_samples_to_generate_entry.delete(0, tk.END)
self.number_of_samples_to_generate_entry.insert(0, configure["number_of_samples_to_generate"])
self.sample_height_entry.delete(0, tk.END)
self.sample_height_entry.insert(0, configure["sample_height"])
self.sample_width_entry.delete(0, tk.END)
self.sample_width_entry.insert(0, configure["sample_width"])
self.sample_random_aspect_ratio_var.set(configure["sample_random_aspect_ratio"])
self.sample_on_training_start_var.set(configure["sample_on_training_start"])
self.use_aspect_ratio_bucketing_var.set(configure["aspect_ratio_bucketing"])
self.seed_entry.delete(0, tk.END)
self.seed_entry.insert(0, configure["seed"])
self.dataset_repeats_entry.delete(0, tk.END)
self.dataset_repeats_entry.insert(0, configure["dataset_repeats"])
self.limit_text_encoder_entry.delete(0, tk.END)
if configure["limit_text_encoder_training"] != '0':
self.limit_text_encoder_entry.insert(0, configure["limit_text_encoder_training"])
self.use_text_files_as_captions_var.set(configure["use_text_files_as_captions"])
self.convert_to_ckpt_after_training_var.set(configure["convert_to_ckpt_after_training"])
if configure["execute_post_conversion"]:
self.execute_post_conversion = True
self.disable_cudnn_benchmark_var.set(configure["disable_cudnn_benchmark"])
self.sample_step_interval_entry.delete(0, tk.END)
self.sample_step_interval_entry.insert(0, configure["sample_step_interval"])
self.conditional_dropout_entry.delete(0, tk.END)
self.conditional_dropout_entry.insert(0, configure["conditional_dropout"])
self.clip_penultimate_var.set(configure["clip_penultimate"])
self.use_ema_var.set(configure["use_ema"])
if configure["aspect_ratio_bucketing"]:
self.aspect_ratio_bucketing_mode_label.configure(state='normal')
self.aspect_ratio_bucketing_mode_option_menu.configure(state='normal')
self.dynamic_bucketing_mode_label.configure(state='normal')
self.dynamic_bucketing_mode_option_menu.configure(state='normal')
else:
self.aspect_ratio_bucketing_mode_label.configure(state='disabled')
self.aspect_ratio_bucketing_mode_option_menu.configure(state='disabled')
self.dynamic_bucketing_mode_label.configure(state='disabled')
self.dynamic_bucketing_mode_option_menu.configure(state='disabled')
self.model_variant_var.set(configure["model_variant"])
self.masked_training_var.set(configure["masked_training"])
self.normalize_masked_area_loss_var.set(configure["normalize_masked_area_loss"])
self.unmasked_probability_var.set(configure["unmasked_probability"])
self.max_denoising_strength_var.set(configure["max_denoising_strength"])
self.fallback_mask_prompt_entry.delete(0, tk.END)
self.fallback_mask_prompt_entry.insert(0, configure["fallback_mask_prompt"])
self.aspect_ratio_bucketing_mode_var.set(configure["aspect_ratio_bucketing_mode"])
self.dynamic_bucketing_mode_var.set(configure["dynamic_bucketing_mode"])
self.attention_var.set(configure["attention"])
self.batch_prompt_sampling_optionmenu_var.set(str(configure['batch_prompt_sampling']))
self.shuffle_dataset_per_epoch_var.set(configure["shuffle_dataset_per_epoch"])
self.use_offset_noise_var.set(configure["use_offset_noise"])
self.offset_noise_weight_entry.delete(0, tk.END)
self.offset_noise_weight_entry.insert(0, configure["offset_noise_weight"])
self.use_gan_var.set(configure["use_gan"])
self.gan_weight_entry.delete(0, tk.END)
self.gan_weight_entry.insert(0, configure["gan_weight"])
self.use_lion_var.set(configure["use_lion"])
self.update()
def process_inputs(self,export=None):
#collect and process all the inputs
self.update_controlled_seed_sample()
self.update_sample_prompts()
self.save_concept_to_json(filename='stabletune_concept_list.json')
self.update_concepts()
for i in range(len(self.sample_prompts)):
self.sample_prompts.append(self.sample_prompts[i])
for i in range(len(self.add_controlled_seed_to_sample)):
self.add_controlled_seed_to_sample.append(self.add_controlled_seed_to_sample[i])
self.model_path = self.input_model_path_entry.get()
self.vae_path = self.vae_model_path_entry.get()
self.output_path = self.output_path_entry.get()
self.send_telegram_updates = self.send_telegram_updates_var.get()
self.telegram_token = self.telegram_token_entry.get()
self.telegram_chat_id = self.telegram_chat_id_entry.get()
self.resolution = self.resolution_var.get()
self.batch_size = self.train_batch_size_var.get()
self.train_epocs = self.train_epochs_entry.get()
self.mixed_precision = self.mixed_precision_var.get()
self.use_8bit_adam = self.use_8bit_adam_var.get()
self.use_gradient_checkpointing = self.use_gradient_checkpointing_var.get()
self.accumulation_steps = self.gradient_accumulation_steps_var.get()
self.learning_rate = self.learning_rate_entry.get()
self.warmup_steps = self.num_warmup_steps_entry.get()
self.learning_rate_scheduler = self.learning_rate_scheduler_var.get()
#self.use_latent_cache = self.use_latent_cache_var.get()
#self.save_latent_cache = self.save_latent_cache_var.get()
self.regenerate_latent_cache = self.regenerate_latent_cache_var.get()
self.train_text_encoder = self.train_text_encoder_var.get()
self.with_prior_loss_preservation = self.with_prior_loss_preservation_var.get()
self.prior_loss_preservation_weight = self.prior_loss_preservation_weight_entry.get()
self.use_image_names_as_captions = self.use_image_names_as_captions_var.get()
self.shuffle_captions = self.shuffle_captions_var.get()
self.auto_balance_concept_datasets = self.auto_balance_dataset_var.get()
self.add_class_images_to_dataset = self.add_class_images_to_dataset_var.get()
self.number_of_class_images = self.number_of_class_images_entry.get()
self.save_every_n_epochs = self.save_every_n_epochs_entry.get()
self.number_of_samples_to_generate = self.number_of_samples_to_generate_entry.get()
self.sample_height = self.sample_height_entry.get()
self.sample_width = self.sample_width_entry.get()
self.sample_random_aspect_ratio = self.sample_random_aspect_ratio_var.get()
self.sample_on_training_start = self.sample_on_training_start_var.get()
self.concept_list_json_path = 'stabletune_concept_list.json'
self.use_aspect_ratio_bucketing = self.use_aspect_ratio_bucketing_var.get()
self.seed_number = self.seed_entry.get()
self.dataset_repeats = self.dataset_repeats_entry.get()
self.limit_text_encoder = self.limit_text_encoder_entry.get()
self.use_text_files_as_captions = self.use_text_files_as_captions_var.get()
self.convert_to_ckpt_after_training = self.convert_to_ckpt_after_training_var.get()
self.disable_cudnn_benchmark = self.disable_cudnn_benchmark_var.get()
self.sample_step_interval = self.sample_step_interval_entry.get()
self.cloud_mode = self.cloud_mode_var.get()
self.conditional_dropout = self.conditional_dropout_entry.get()
self.clip_penultimate = self.clip_penultimate_var.get()
self.use_ema = self.use_ema_var.get()
self.aspect_ratio_bucketing_mode = self.aspect_ratio_bucketing_mode_var.get()
self.dynamic_bucketing_mode = self.dynamic_bucketing_mode_var.get()
self.model_variant = self.model_variant_var.get()
self.masked_training = self.masked_training_var.get()
self.normalize_masked_area_loss = self.normalize_masked_area_loss_var.get()
self.unmasked_probability = self.unmasked_probability_var.get()
self.max_denoising_strength = self.max_denoising_strength_var.get()
self.fallback_mask_prompt = self.fallback_mask_prompt_entry.get()
self.attention = self.attention_var.get()
self.batch_prompt_sampling = int(self.batch_prompt_sampling_optionmenu_var.get())
self.shuffle_dataset_per_epoch = self.shuffle_dataset_per_epoch_var.get()
self.use_offset_noise = self.use_offset_noise_var.get()
self.offset_noise_weight = self.offset_noise_weight_entry.get()
self.use_gan = self.use_gan_var.get()
self.gan_weight = self.gan_weight_entry.get()
self.use_lion = self.use_lion_var.get()
mode = 'normal'
if self.cloud_mode == False and export == None:
#check if output path exists
if os.path.exists(self.output_path) == True:
#check if output path is empty
if len(os.listdir(self.output_path)) > 0:
#show a messagebox asking if the user wants to overwrite the output path
overwrite = messagebox.askyesno("Overwrite Output Path", "The output path is not empty. Do you want to overwrite it?")
if overwrite == False:
return
else:
#delete the contents of the output path but the logs or 0 directory
for file in os.listdir(self.output_path):
if file != 'logs' and file != '0':
if os.path.isdir(self.output_path + '/' + file) == True:
shutil.rmtree(self.output_path + '/' + file)
else:
os.remove(self.output_path + '/' + file)
if self.cloud_mode == True or export == 'LinuxCMD':
if export == 'LinuxCMD':
mode = 'LinuxCMD'
export='Linux'
#create a sessionName for the cloud based on the output path name and the time
#format time and date to %month%day%hour%minute
now = datetime.now()
dt_string = now.strftime("%m-%d-%H-%M")
self.export_name = self.output_path.split('/')[-1].split('\\')[-1] + '_' + dt_string
self.packageForCloud()
if int(self.train_epocs) == 0 or self.train_epocs == '':
messagebox.showerror("Error", "Number of training epochs must be greater than 0")
return
#open stabletune_concept_list.json
if os.path.exists('stabletune_last_run.json'):
try:
with open('stabletune_last_run.json') as f:
self.last_run = json.load(f)
if self.regenerate_latent_cache == False:
if self.last_run["concepts"] == self.concepts:
#check if resolution is the same
try:
#try because I keep adding stuff to the json file and it may error out for peeps
if self.last_run["resolution"] != self.resolution or self.use_text_files_as_captions != self.last_run['use_text_files_as_captions'] or self.last_run['dataset_repeats'] != self.dataset_repeats or self.last_run["batch_size"] != self.batch_size or self.last_run["train_text_encoder"] != self.train_text_encoder or self.last_run["use_image_names_as_captions"] != self.use_image_names_as_captions or self.last_run["shuffle_captions"] != self.shuffle_captions or self.last_run["auto_balance_concept_datasets"] != self.auto_balance_concept_datasets or self.last_run["add_class_images_to_dataset"] != self.add_class_images_to_dataset or self.last_run["number_of_class_images"] != self.number_of_class_images or self.last_run["aspect_ratio_bucketing"] != self.use_aspect_ratio_bucketing or self.last_run["masked_training"] != self.masked_training:
self.regenerate_latent_cache = True
#show message
messagebox.showinfo("StableTuner", "Configuration changed, regenerating latent cache")
except:
print("Error trying to see if regenerating latent cache is needed, this means it probably needs to be regenerated and ST was updated recently.")
pass
else:
messagebox.showinfo("StableTuner", "Configuration changed, regenerating latent cache")
self.regenerate_latent_cache = True
else:
messagebox.showinfo("StableTuner", "Warning: Regenerating latent cache is enabled, will regenerate latent cache")
except Exception as e:
print(e)
print("Error checking last run, regenerating latent cache")
self.regenerate_latent_cache = True
#create a bat file to run the training
if self.mixed_precision == 'fp16' or self.mixed_precision == 'bf16':
batBase = f'accelerate "launch" "--mixed_precision={self.mixed_precision}" "scripts/trainer.py"'
if export == 'Linux':
batBase = f'accelerate launch --mixed_precision="{self.mixed_precision}" scripts/trainer.py'
else:
if self.mixed_precision == 'fp32':
batBase = 'accelerate "launch" "--mixed_precision=no" "scripts/trainer.py"'
if export == 'Linux':
batBase = f'accelerate launch --mixed_precision="no" scripts/trainer.py'
elif self.mixed_precision == 'tf32':
batBase = 'accelerate "launch" "--mixed_precision=no" "scripts/trainer.py"'
if export == 'Linux':
batBase = f'accelerate launch --mixed_precision="no" scripts/trainer.py'
if self.shuffle_dataset_per_epoch == True:
if export == 'Linux':
batBase += ' --shuffle_per_epoch'
else:
batBase += ' "--shuffle_per_epoch"'
if self.batch_prompt_sampling != 0:
if export == 'Linux':
batBase += f' --sample_from_batch={self.batch_prompt_sampling}'
else:
batBase += f' "--sample_from_batch={self.batch_prompt_sampling}"'
if self.attention == 'xformers':
if export == 'Linux':
batBase += ' --attention="xformers"'
else:
batBase += ' "--attention=xformers" '
elif self.attention == 'Flash Attention':
if export == 'Linux':
batBase += ' --attention="flash_attention"'
else:
batBase += ' "--attention=flash_attention" '
if self.model_variant == 'Regular':
if export == 'Linux':
batBase += ' --model_variant="base"'
else:
batBase += ' "--model_variant=base" '
elif self.model_variant == 'Inpaint':
if export == 'Linux':
batBase += ' --model_variant="inpainting"'
else:
batBase += ' "--model_variant=inpainting" '
elif self.model_variant == 'Depth2Img':
if export == 'Linux':
batBase += ' --model_variant="depth2img"'
else:
batBase += ' "--model_variant=depth2img" '
if self.masked_training == True:
if export == 'Linux':
batBase += ' --masked_training '
else:
batBase += ' "--masked_training" '
if self.normalize_masked_area_loss == True:
if export == 'Linux':
batBase += ' --normalize_masked_area_loss '
else:
batBase += ' "--normalize_masked_area_loss" '
try:
# if unmasked_probability is a percentage calculate what epoch to stop at
if '%' in self.unmasked_probability:
percent = float(self.unmasked_probability.replace('%', ''))
fraction = percent / 100
if export == 'Linux':
batBase += f' --unmasked_probability={fraction}'
else:
batBase += f' "--unmasked_probability={fraction}" '
elif '%' not in self.unmasked_probability and self.unmasked_probability.strip() != '' and self.unmasked_probability != '0':
if export == 'Linux':
batBase += f' --unmasked_probability={self.unmasked_probability}'
else:
batBase += f' "--unmasked_probability={self.unmasked_probability}" '
except:
pass
try:
# if max_denoising_strength is a percentage calculate what epoch to stop at
if '%' in self.max_denoising_strength:
percent = float(self.max_denoising_strength.replace('%', ''))
fraction = percent / 100
if export == 'Linux':
batBase += f' --max_denoising_strength={fraction}'
else:
batBase += f' "--max_denoising_strength={fraction}" '
elif '%' not in self.max_denoising_strength and self.max_denoising_strength.strip() != '' and self.max_denoising_strength != '0':
if export == 'Linux':
batBase += f' --max_denoising_strength={self.max_denoising_strength}'
else:
batBase += f' "--max_denoising_strength={self.max_denoising_strength}" '
except:
pass
if self.fallback_mask_prompt != '':
if export == 'Linux':
batBase += f' --add_mask_prompt="{self.fallback_mask_prompt}"'
else:
batBase += f' "--add_mask_prompt={self.fallback_mask_prompt}" '
if self.disable_cudnn_benchmark == True:
if export == 'Linux':
batBase += ' --disable_cudnn_benchmark'
else:
batBase += ' "--disable_cudnn_benchmark" '
if self.use_text_files_as_captions == True:
if export == 'Linux':
batBase += ' --use_text_files_as_captions'
else:
batBase += ' "--use_text_files_as_captions" '
if int(self.sample_step_interval) != 0 or self.sample_step_interval != '' or self.sample_step_interval != ' ':
if export == 'Linux':
batBase += f' --sample_step_interval={self.sample_step_interval}'
else:
batBase += f' "--sample_step_interval={self.sample_step_interval}" '
try:
#if limit_text_encoder is a percentage calculate what epoch to stop at
if '%' in self.limit_text_encoder:
percent = float(self.limit_text_encoder.replace('%',''))
stop_epoch = int((int(self.train_epocs) * percent) / 100)
if export == 'Linux':
batBase += f' --stop_text_encoder_training={stop_epoch}'
else:
batBase += f' "--stop_text_encoder_training={stop_epoch}" '
elif '%' not in self.limit_text_encoder and self.limit_text_encoder.strip() != '' and self.limit_text_encoder != '0':
if export == 'Linux':
batBase += f' --stop_text_encoder_training={self.limit_text_encoder}'
else:
batBase += f' "--stop_text_encoder_training={self.limit_text_encoder}" '
except:
pass
if export=='Linux':
batBase += f' --pretrained_model_name_or_path="{self.model_path}" '
batBase += f' --pretrained_vae_name_or_path="{self.vae_path}" '
batBase += f' --output_dir="{self.output_path}" '
batBase += f' --seed={self.seed_number} '
batBase += f' --resolution={self.resolution} '
batBase += f' --train_batch_size={self.batch_size} '
batBase += f' --num_train_epochs={self.train_epocs} '
else:
batBase += f' "--pretrained_model_name_or_path={self.model_path}" '
batBase += f' "--pretrained_vae_name_or_path={self.vae_path}" '
batBase += f' "--output_dir={self.output_path}" '
batBase += f' "--seed={self.seed_number}" '
batBase += f' "--resolution={self.resolution}" '
batBase += f' "--train_batch_size={self.batch_size}" '
batBase += f' "--num_train_epochs={self.train_epocs}" '
if self.mixed_precision == 'fp16' or self.mixed_precision == 'bf16' or self.mixed_precision == 'tf32':
if export == 'Linux':
batBase += f' --mixed_precision="{self.mixed_precision}"'
else:
batBase += f' "--mixed_precision={self.mixed_precision}" '
if self.use_aspect_ratio_bucketing:
if export == 'Linux':
batBase += ' --use_bucketing'
else:
batBase += f' "--use_bucketing" '
if self.aspect_ratio_bucketing_mode == 'Dynamic Fill':
com = 'dynamic'
if self.aspect_ratio_bucketing_mode == 'Drop Fill':
com = 'truncate'
if self.aspect_ratio_bucketing_mode == 'Duplicate Fill':
com = 'add'
if export == 'Linux':
batBase += f' --aspect_mode="{com}"'
else:
batBase += f' "--aspect_mode={com}" '
if self.dynamic_bucketing_mode == 'Duplicate':
com = 'add'
if self.dynamic_bucketing_mode == 'Drop':
com = 'truncate'
if export == 'Linux':
batBase += f' --aspect_mode_action_preference="{com}"'
else:
batBase += f' "--aspect_mode_action_preference={com}" '
if self.use_8bit_adam == True:
if export == 'Linux':
batBase += ' --use_8bit_adam'
else:
batBase += f' "--use_8bit_adam" '
if self.use_gradient_checkpointing == True:
if export == 'Linux':
batBase += ' --gradient_checkpointing'
else:
batBase += f' "--gradient_checkpointing" '
if self.use_lion == True:
if export == 'Linux':
batBase += ' --use_lion'
else:
batBase += f' "--use_lion" '
if export == 'Linux':
batBase += f' --gradient_accumulation_steps={self.accumulation_steps}'
batBase += f' --learning_rate={self.learning_rate}'
batBase += f' --lr_warmup_steps={self.warmup_steps}'
batBase += f' --lr_scheduler="{self.learning_rate_scheduler}"'
else:
batBase += f' "--gradient_accumulation_steps={self.accumulation_steps}" '
batBase += f' "--learning_rate={self.learning_rate}" '
batBase += f' "--lr_warmup_steps={self.warmup_steps}" '
batBase += f' "--lr_scheduler={self.learning_rate_scheduler}" '
if self.regenerate_latent_cache == True:
if export == 'Linux':
batBase += ' --regenerate_latent_cache'
else:
batBase += f' "--regenerate_latent_cache" '
if self.train_text_encoder == True:
if export == 'Linux':
batBase += ' --train_text_encoder'
else:
batBase += f' "--train_text_encoder" '
if self.with_prior_loss_preservation == True and self.use_aspect_ratio_bucketing == False:
if export == 'Linux':
batBase += ' --with_prior_preservation'
batBase += f' --prior_loss_weight={self.prior_loss_preservation_weight}'
else:
batBase += f' "--with_prior_preservation" '
batBase += f' "--prior_loss_weight={self.prior_loss_preservation_weight}" '
elif self.with_prior_loss_preservation == True and self.use_aspect_ratio_bucketing == True:
print('loss preservation isnt supported with aspect ratio bucketing yet, sorry!')
if self.use_image_names_as_captions == True:
if export == 'Linux':
batBase += ' --use_image_names_as_captions'
else:
batBase += f' "--use_image_names_as_captions" '
if self.shuffle_captions == True:
if export == 'Linux':
batBase += ' --shuffle_captions'
else:
batBase += f' "--shuffle_captions" '
if self.use_offset_noise == True:
if export == 'Linux':
batBase += f' --with_offset_noise'
batBase += f' --offset_noise_weight={self.offset_noise_weight}'
else:
batBase += f' "--with_offset_noise" '
batBase += f' "--offset_noise_weight={self.offset_noise_weight}" '
if self.use_gan == True:
if export == 'Linux':
batBase += f' --with_gan'
batBase += f' --gan_weight={self.gan_weight}'
else:
batBase += f' "--with_gan" '
batBase += f' "--gan_weight={self.gan_weight}" '
if self.auto_balance_concept_datasets == True:
if export == 'Linux':
batBase += ' --auto_balance_concept_datasets'
else:
batBase += f' "--auto_balance_concept_datasets" '
if self.add_class_images_to_dataset == True and self.with_prior_loss_preservation == False:
if export == 'Linux':
batBase += ' --add_class_images_to_dataset'
else:
batBase += f' "--add_class_images_to_dataset" '
if export == 'Linux':
batBase += f' --concepts_list="{self.concept_list_json_path}"'
batBase += f' --num_class_images={self.number_of_class_images}'
batBase += f' --save_every_n_epoch={self.save_every_n_epochs}'
batBase += f' --n_save_sample={self.number_of_samples_to_generate}'
batBase += f' --sample_height={self.sample_height}'
batBase += f' --sample_width={self.sample_width}'
batBase += f' --dataset_repeats={self.dataset_repeats}'
else:
batBase += f' "--concepts_list={self.concept_list_json_path}" '
batBase += f' "--num_class_images={self.number_of_class_images}" '
batBase += f' "--save_every_n_epoch={self.save_every_n_epochs}" '
batBase += f' "--n_save_sample={self.number_of_samples_to_generate}" '
batBase += f' "--sample_height={self.sample_height}" '
batBase += f' "--sample_width={self.sample_width}" '
batBase += f' "--dataset_repeats={self.dataset_repeats}" '
if self.sample_random_aspect_ratio == True:
if export == 'Linux':
batBase += ' --sample_aspect_ratios'
else:
batBase += f' "--sample_aspect_ratios" '
if self.send_telegram_updates == True:
if export == 'Linux':
batBase += ' --send_telegram_updates'
batBase += f' --telegram_token="{self.telegram_token}"'
batBase += f' --telegram_chat_id="{self.telegram_chat_id}"'
else:
batBase += f' "--send_telegram_updates" '
batBase += f' "--telegram_token={self.telegram_token}" '
batBase += f' "--telegram_chat_id={self.telegram_chat_id}" '
#remove duplicates from self.sample_prompts
self.sample_prompts = list(dict.fromkeys(self.sample_prompts))
#remove duplicates from self.add_controlled_seed_to_sample
self.add_controlled_seed_to_sample = list(dict.fromkeys(self.add_controlled_seed_to_sample))
for i in range(len(self.sample_prompts)):
if export == 'Linux':
batBase += f' --add_sample_prompt="{self.sample_prompts[i]}"'
else:
batBase += f' "--add_sample_prompt={self.sample_prompts[i]}" '
for i in range(len(self.add_controlled_seed_to_sample)):
if export == 'Linux':
batBase += f' --save_sample_controlled_seed={self.add_controlled_seed_to_sample[i]}'
else:
batBase += f' "--save_sample_controlled_seed={self.add_controlled_seed_to_sample[i]}" '
if self.sample_on_training_start == True:
if export == 'Linux':
batBase += ' --sample_on_training_start'
else:
batBase += f' "--sample_on_training_start" '
if len(self.conditional_dropout) > 0 and self.conditional_dropout != ' ' and self.conditional_dropout != '0':
#if % is in the string, remove it
if '%' in self.conditional_dropout:
self.conditional_dropout = self.conditional_dropout.replace('%', '')
#convert to float from percentage string
self.conditional_dropout = float(self.conditional_dropout) / 100
else:
#check if float
try:
#check if value is above 1.0
if float(self.conditional_dropout) > 1.0:
#divide by 100
self.conditional_dropout = float(self.conditional_dropout) / 100
else:
self.conditional_dropout = float(self.conditional_dropout)
except:
print('Error: Conditional Dropout must be a percent between 0 and 100, or a decimal between 0 and 1.')
#print(self.conditional_dropout)
#if self.coniditional dropout is a float
if isinstance(self.conditional_dropout, float):
if export == 'Linux':
batBase += f' --conditional_dropout={self.conditional_dropout}'
else:
batBase += f' "--conditional_dropout={self.conditional_dropout}" '
#save configure
if self.clip_penultimate == True:
if export == 'Linux':
batBase += ' --clip_penultimate'
else:
batBase += f' "--clip_penultimate" '
if self.use_ema == True:
if export == 'Linux':
batBase += ' --use_ema'
else:
batBase += f' "--use_ema" '
self.save_config('stabletune_last_run.json')
#check if output folder exists
if os.path.exists(self.output_path) == False:
#create everything leading up to output folder
os.makedirs(self.output_path)
#get unique name for config file
now = datetime.now()
dt_string = now.strftime("%m-%d-%H-%M")
#construct name
config_log_name = 'stabletuner'+'_'+str(self.resolution)+"_e"+str(self.train_epocs)+"_"+dt_string+'.json'
self.save_config(os.path.join(self.output_path, config_log_name))
if export == False:
#save the bat file
with open("scripts/train.bat", "w", encoding="utf-8") as f:
f.write(batBase)
#close the window
self.destroy()
#run the bat file
self.quit()
train = os.system(r".\scripts\train.bat")
#if exit code is 0, then the training was successful
if train == 0:
app = App()
app.mainloop()
#if user closed the window or keyboard interrupt, then cancel conversion
elif train == 1:
os.system("pause")
#restart the app
elif export == 'win':
with open("train.bat", "w", encoding="utf-8") as f:
f.write(batBase)
#show message
messagebox.showinfo("Export", "Exported to train.bat")
elif mode == 'LinuxCMD':
#copy batBase to clipboard
trainer_index = batBase.find('trainer.py')+11
batStart = batBase[:trainer_index]
batCommands = batBase[trainer_index:]
#split on -- and remove the first element
batCommands = batCommands.split('--')
batBase = batStart+' \\\n'
for command in batCommands[1:]:
#add the -- back
if command != batCommands[-1]:
command = ' --'+command+'\\'+'\n'
else:
command = ' --'+command
batBase += command
pyperclip.copy('!'+batBase)
shutil.rmtree(self.full_export_path)
messagebox.showinfo("Export", "Copied new training command to clipboard.")
return
elif export == 'Linux' and self.cloud_mode == True:
notebook = 'resources/stableTuner_notebook.ipynb'
#load the notebook as a dictionary
with open(notebook) as f:
nb = json.load(f)
#get the last cell
#find the cell with the source that contains changeMe
#format batBase so it won't be one line
#find index in batBase of the trainer.py
trainer_index = batBase.find('trainer.py')+11
batStart = batBase[:trainer_index]
batCommands = batBase[trainer_index:]
#split on -- and remove the first element
batCommands = batCommands.split('--')
batBase = batStart+' \\\n'
for command in batCommands[1:]:
#add the -- back
if command != batCommands[-1]:
command = ' --'+command+'\\'+'\n'
else:
command = ' --'+command
batBase += command
for i in range(len(nb['cells'])):
if 'changeMe' in nb['cells'][i]['source']:
code_cell = nb['cells'][i]
index = i
code_cell['source'] = '!'+batBase
#replace the last cell with the new one
nb['cells'][index] = code_cell
break
#save the notebook to the export folder
shutil.copy('requirements.txt', self.full_export_path)
#zip up everything in export without the folder itself
shutil.make_archive('payload', 'zip', self.full_export_path)
#move the zip file to the export folder
shutil.move('payload.zip', self.full_export_path)
#save the notebook to the export folder
with open(self.full_export_path+os.sep+'stableTuner_notebook.ipynb', 'w') as f:
json.dump(nb, f)
#delete everything in the export folder except the zip file and the notebook
for file in os.listdir(self.full_export_path):
if file.endswith('.zip') or file.endswith('.ipynb'):
continue
else:
#if it's a folder, delete it
if os.path.isdir(self.full_export_path+os.sep+file):
shutil.rmtree(self.full_export_path+os.sep+file)
#if it's a file, delete it
else:
os.remove(self.full_export_path+os.sep+file)
#show message
messagebox.showinfo("Success", f"Your cloud\linux payload is ready to go!\nSaved to: {self.full_export_path}\n\nUpload the files and run the notebook to start training.")
def restart(instance):
instance.destroy()
#os.startfile(os.getcwd()+'/scripts/configuration_gui.py')
app = App()
app.mainloop()
#root = ctk.CTk()
app = App()
app.mainloop()