File size: 17,474 Bytes
3a18eba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import gradio as gr
import json
import math
from pathlib import Path
from typing import Optional
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel,DiffusionPipeline, DPMSolverMultistepScheduler,EulerDiscreteScheduler
from diffusers.optimization import get_scheduler
from huggingface_hub import HfFolder, Repository, whoami
from torchvision import transforms
from tqdm.auto import tqdm
from typing import Dict, List, Generator, Tuple
from PIL import Image, ImageFile
from collections.abc import Iterable
from trainer_util import *
from dataloaders_util import *

# FlashAttention based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main
# /memory_efficient_attention_pytorch/flash_attention.py LICENSE MIT
# https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE constants
EPSILON = 1e-6

class bcolors:
    HEADER = '\033[95m'
    OKBLUE = '\033[94m'
    OKCYAN = '\033[96m'
    OKGREEN = '\033[92m'
    WARNING = '\033[93m'
    FAIL = '\033[91m'
    ENDC = '\033[0m'
    BOLD = '\033[1m'
    UNDERLINE = '\033[4m'
# helper functions
def print_instructions():
            tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+G' to open up a GUI to play around with the model (will pause training){bcolors.ENDC}")
            tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+S' to save a checkpoint of the current epoch{bcolors.ENDC}")
            tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+P' to generate samples for current epoch{bcolors.ENDC}")
            tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+Q' to save and quit after the current epoch{bcolors.ENDC}")
            tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+ALT+S' to save a checkpoint of the current step{bcolors.ENDC}")
            tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+ALT+P' to generate samples for current step{bcolors.ENDC}")
            tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+ALT+Q' to save and quit after the current step{bcolors.ENDC}")
            tqdm.write('')
            tqdm.write(f"{bcolors.WARNING}Use 'CTRL+H' to print this message again.{bcolors.ENDC}")
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"

#function to format a dictionary into a telegram message
def format_dict(d):
    message = ""
    for key, value in d.items():
        #filter keys that have the word "token" in them
        if "token" in key and "tokenizer" not in key:
            value = "TOKEN"
        if 'id' in key:
            value = "ID"
        #if value is a dictionary, format it recursively
        if isinstance(value, dict):
            for k, v in value.items():
                message += f"\n- {k}:  <b>{v}</b> \n"
        elif isinstance(value, list):
            #each value is a new line in the message
            message += f"- {key}:\n\n"
            for v in value:
                    message += f"  <b>{v}</b>\n\n"
        #if value is a list, format it as a list
        else:
            message += f"- {key}:  <b>{value}</b>\n"
    return message

def send_telegram_message(message, chat_id, token):
    url = f"https://api.telegram.org/bot{token}/sendMessage?chat_id={chat_id}&text={message}&parse_mode=html&disable_notification=True"
    import requests
    req = requests.get(url)
    if req.status_code != 200:
        raise ValueError(f"Telegram request failed with status code {req.status_code}")
def send_media_group(chat_id,telegram_token, images, caption=None, reply_to_message_id=None):
        """
        Use this method to send an album of photos. On success, an array of Messages that were sent is returned.
        :param chat_id: chat id
        :param images: list of PIL images to send
        :param caption: caption of image
        :param reply_to_message_id: If the message is a reply, ID of the original message
        :return: response with the sent message
        """
        SEND_MEDIA_GROUP = f'https://api.telegram.org/bot{telegram_token}/sendMediaGroup'
        from io import BytesIO
        import requests
        files = {}
        media = []
        for i, img in enumerate(images):
            with BytesIO() as output:
                img.save(output, format='PNG')
                output.seek(0)
                name = f'photo{i}'
                files[name] = output.read()
                # a list of InputMediaPhoto. attach refers to the name of the file in the files dict
                media.append(dict(type='photo', media=f'attach://{name}'))
        media[0]['caption'] = caption
        media[0]['parse_mode'] = 'HTML'
        return requests.post(SEND_MEDIA_GROUP, data={'chat_id': chat_id, 'media': json.dumps(media),'disable_notification':True, 'reply_to_message_id': reply_to_message_id }, files=files)
class AverageMeter:
    def __init__(self, name=None, max_eta=None):
        self.name = name
        self.max_eta = max_eta
        self.reset()

    def reset(self):
        self.count = self.avg = 0

    @torch.no_grad()
    def update(self, val, n=1):
        eta = self.count / (self.count + n)
        if self.max_eta:
            eta = min(eta, self.max_eta ** n)
        self.avg += (1 - eta) * (val - self.avg)
        self.count += n

def exists(val):
    return val is not None


def default(val, d):
    return val if exists(val) else d


def masked_mse_loss(predicted, target, mask, reduction="none"):
    masked_predicted = predicted * mask
    masked_target = target * mask
    return F.mse_loss(masked_predicted, masked_target, reduction=reduction)

# flash attention forwards and backwards
# https://arxiv.org/abs/2205.14135


class FlashAttentionFunction(torch.autograd.function.Function):
    @staticmethod
    @torch.no_grad()
    def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
        """ Algorithm 2 in the paper """

        device = q.device
        dtype = q.dtype
        max_neg_value = -torch.finfo(q.dtype).max
        qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)

        o = torch.zeros_like(q)
        all_row_sums = torch.zeros(
            (*q.shape[:-1], 1), dtype=dtype, device=device)
        all_row_maxes = torch.full(
            (*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)

        scale = (q.shape[-1] ** -0.5)

        if not exists(mask):
            mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
        else:
            mask = rearrange(mask, 'b n -> b 1 1 n')
            mask = mask.split(q_bucket_size, dim=-1)

        row_splits = zip(
            q.split(q_bucket_size, dim=-2),
            o.split(q_bucket_size, dim=-2),
            mask,
            all_row_sums.split(q_bucket_size, dim=-2),
            all_row_maxes.split(q_bucket_size, dim=-2),
        )

        for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
            q_start_index = ind * q_bucket_size - qk_len_diff

            col_splits = zip(
                k.split(k_bucket_size, dim=-2),
                v.split(k_bucket_size, dim=-2),
            )

            for k_ind, (kc, vc) in enumerate(col_splits):
                k_start_index = k_ind * k_bucket_size

                attn_weights = einsum(
                    '... i d, ... j d -> ... i j', qc, kc) * scale

                if exists(row_mask):
                    attn_weights.masked_fill_(~row_mask, max_neg_value)

                if causal and q_start_index < (k_start_index + k_bucket_size - 1):
                    causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
                                             device=device).triu(q_start_index - k_start_index + 1)
                    attn_weights.masked_fill_(causal_mask, max_neg_value)

                block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
                attn_weights -= block_row_maxes
                exp_weights = torch.exp(attn_weights)

                if exists(row_mask):
                    exp_weights.masked_fill_(~row_mask, 0.)

                block_row_sums = exp_weights.sum(
                    dim=-1, keepdims=True).clamp(min=EPSILON)

                new_row_maxes = torch.maximum(block_row_maxes, row_maxes)

                exp_values = einsum(
                    '... i j, ... j d -> ... i d', exp_weights, vc)

                exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
                exp_block_row_max_diff = torch.exp(
                    block_row_maxes - new_row_maxes)

                new_row_sums = exp_row_max_diff * row_sums + \
                               exp_block_row_max_diff * block_row_sums

                oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_(
                    (exp_block_row_max_diff / new_row_sums) * exp_values)

                row_maxes.copy_(new_row_maxes)
                row_sums.copy_(new_row_sums)

        ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
        ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)

        return o

    @staticmethod
    @torch.no_grad()
    def backward(ctx, do):
        """ Algorithm 4 in the paper """

        causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
        q, k, v, o, l, m = ctx.saved_tensors

        device = q.device

        max_neg_value = -torch.finfo(q.dtype).max
        qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)

        dq = torch.zeros_like(q)
        dk = torch.zeros_like(k)
        dv = torch.zeros_like(v)

        row_splits = zip(
            q.split(q_bucket_size, dim=-2),
            o.split(q_bucket_size, dim=-2),
            do.split(q_bucket_size, dim=-2),
            mask,
            l.split(q_bucket_size, dim=-2),
            m.split(q_bucket_size, dim=-2),
            dq.split(q_bucket_size, dim=-2)
        )

        for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
            q_start_index = ind * q_bucket_size - qk_len_diff

            col_splits = zip(
                k.split(k_bucket_size, dim=-2),
                v.split(k_bucket_size, dim=-2),
                dk.split(k_bucket_size, dim=-2),
                dv.split(k_bucket_size, dim=-2),
            )

            for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
                k_start_index = k_ind * k_bucket_size

                attn_weights = einsum(
                    '... i d, ... j d -> ... i j', qc, kc) * scale

                if causal and q_start_index < (k_start_index + k_bucket_size - 1):
                    causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
                                             device=device).triu(q_start_index - k_start_index + 1)
                    attn_weights.masked_fill_(causal_mask, max_neg_value)

                exp_attn_weights = torch.exp(attn_weights - mc)

                if exists(row_mask):
                    exp_attn_weights.masked_fill_(~row_mask, 0.)

                p = exp_attn_weights / lc

                dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc)
                dp = einsum('... i d, ... j d -> ... i j', doc, vc)

                D = (doc * oc).sum(dim=-1, keepdims=True)
                ds = p * scale * (dp - D)

                dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc)
                dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc)

                dqc.add_(dq_chunk)
                dkc.add_(dk_chunk)
                dvc.add_(dv_chunk)

        return dq, dk, dv, None, None, None, None

def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
        revision=revision,
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
    else:
        raise ValueError(f"{model_class} is not supported.")

def replace_unet_cross_attn_to_flash_attention():
    print("Using FlashAttention")

    def forward_flash_attn(self, x, context=None, mask=None):
        q_bucket_size = 512
        k_bucket_size = 1024

        h = self.heads
        q = self.to_q(x)

        context = context if context is not None else x
        context = context.to(x.dtype)

        if hasattr(self, 'hypernetwork') and self.hypernetwork is not None:
            context_k, context_v = self.hypernetwork.forward(x, context)
            context_k = context_k.to(x.dtype)
            context_v = context_v.to(x.dtype)
        else:
            context_k = context
            context_v = context

        k = self.to_k(context_k)
        v = self.to_v(context_v)
        del context, x

        q, k, v = map(lambda t: rearrange(
            t, 'b n (h d) -> b h n d', h=h), (q, k, v))

        out = FlashAttentionFunction.apply(q, k, v, mask, False,
                                           q_bucket_size, k_bucket_size)

        out = rearrange(out, 'b h n d -> b n (h d)')

        # diffusers 0.6.0
        if type(self.to_out) is torch.nn.Sequential:
            return self.to_out(out)

        # diffusers 0.7.0
        out = self.to_out[0](out)
        out = self.to_out[1](out)
        return out

    diffusers.models.attention.CrossAttention.forward = forward_flash_attn
class Depth2Img:
    def __init__(self,unet,text_encoder,revision,pretrained_model_name_or_path,accelerator):
        self.unet = unet
        self.text_encoder = text_encoder
        self.revision = revision if revision != 'no' else 'fp32'
        self.pretrained_model_name_or_path = pretrained_model_name_or_path
        self.accelerator = accelerator
        self.pipeline = None
    def depth_images(self,paths):
        if self.pipeline is None:
            self.pipeline = DiffusionPipeline.from_pretrained(
                self.pretrained_model_name_or_path,
                unet=self.accelerator.unwrap_model(self.unet),
                text_encoder=self.accelerator.unwrap_model(self.text_encoder),
                revision=self.revision,
                local_files_only=True,)
            self.pipeline.to(self.accelerator.device)
            self.vae_scale_factor = 2 ** (len(self.pipeline.vae.config.block_out_channels) - 1)
        non_depth_image_files = []
        image_paths_by_path = {}
        
        for path in paths:
            #if path is list
            if isinstance(path, list):
                img = Path(path[0])
            else:
                img = Path(path)
            if self.get_depth_image_path(img).exists():
                continue
            else:
                non_depth_image_files.append(img)
        image_objects = []
        for image_path in non_depth_image_files:
            image_instance = Image.open(image_path)
            if not image_instance.mode == "RGB":
                image_instance = image_instance.convert("RGB")
            image_instance = self.pipeline.feature_extractor(
                image_instance, return_tensors="pt"
            ).pixel_values
            
            image_instance = image_instance.to(self.accelerator.device)
            image_objects.append((image_path, image_instance))
        
        for image_path, image_instance in image_objects:
            path = image_path.parent
            ogImg = Image.open(image_path)
            ogImg_x = ogImg.size[0]
            ogImg_y = ogImg.size[1]
            depth_map = self.pipeline.depth_estimator(image_instance).predicted_depth
            depth_min = torch.amin(depth_map, dim=[0, 1, 2], keepdim=True)
            depth_max = torch.amax(depth_map, dim=[0, 1, 2], keepdim=True)
            depth_map = torch.nn.functional.interpolate(depth_map.unsqueeze(1),size=(ogImg_y, ogImg_x),mode="bicubic",align_corners=False,)           

            depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
            depth_map = depth_map[0,:,:]
            depth_map_image = transforms.ToPILImage()(depth_map)
            depth_map_image = depth_map_image.filter(ImageFilter.GaussianBlur(radius=1))
            depth_map_image.save(self.get_depth_image_path(image_path))
            #quit()
        return 2 ** (len(self.pipeline.vae.config.block_out_channels) - 1)
        
    def get_depth_image_path(self,image_path):
        #if image_path is a string, convert it to a Path object
        if isinstance(image_path, str):
            image_path = Path(image_path)
        return image_path.parent / f"{image_path.stem}-depth.png"
        
def fix_nans_(param, name=None, stats=None):
    (std, mean) = stats or (1, 0)
    tqdm.write(name, param.shape, param.dtype, mean, std)
    param.data = torch.where(param.data.isnan(), torch.randn_like(param.data) * std + mean, param.data).detach()