File size: 17,474 Bytes
3a18eba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
import gradio as gr
import json
import math
from pathlib import Path
from typing import Optional
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel,DiffusionPipeline, DPMSolverMultistepScheduler,EulerDiscreteScheduler
from diffusers.optimization import get_scheduler
from huggingface_hub import HfFolder, Repository, whoami
from torchvision import transforms
from tqdm.auto import tqdm
from typing import Dict, List, Generator, Tuple
from PIL import Image, ImageFile
from collections.abc import Iterable
from trainer_util import *
from dataloaders_util import *
# FlashAttention based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main
# /memory_efficient_attention_pytorch/flash_attention.py LICENSE MIT
# https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE constants
EPSILON = 1e-6
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKCYAN = '\033[96m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
# helper functions
def print_instructions():
tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+G' to open up a GUI to play around with the model (will pause training){bcolors.ENDC}")
tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+S' to save a checkpoint of the current epoch{bcolors.ENDC}")
tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+P' to generate samples for current epoch{bcolors.ENDC}")
tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+Q' to save and quit after the current epoch{bcolors.ENDC}")
tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+ALT+S' to save a checkpoint of the current step{bcolors.ENDC}")
tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+ALT+P' to generate samples for current step{bcolors.ENDC}")
tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+ALT+Q' to save and quit after the current step{bcolors.ENDC}")
tqdm.write('')
tqdm.write(f"{bcolors.WARNING}Use 'CTRL+H' to print this message again.{bcolors.ENDC}")
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
#function to format a dictionary into a telegram message
def format_dict(d):
message = ""
for key, value in d.items():
#filter keys that have the word "token" in them
if "token" in key and "tokenizer" not in key:
value = "TOKEN"
if 'id' in key:
value = "ID"
#if value is a dictionary, format it recursively
if isinstance(value, dict):
for k, v in value.items():
message += f"\n- {k}: <b>{v}</b> \n"
elif isinstance(value, list):
#each value is a new line in the message
message += f"- {key}:\n\n"
for v in value:
message += f" <b>{v}</b>\n\n"
#if value is a list, format it as a list
else:
message += f"- {key}: <b>{value}</b>\n"
return message
def send_telegram_message(message, chat_id, token):
url = f"https://api.telegram.org/bot{token}/sendMessage?chat_id={chat_id}&text={message}&parse_mode=html&disable_notification=True"
import requests
req = requests.get(url)
if req.status_code != 200:
raise ValueError(f"Telegram request failed with status code {req.status_code}")
def send_media_group(chat_id,telegram_token, images, caption=None, reply_to_message_id=None):
"""
Use this method to send an album of photos. On success, an array of Messages that were sent is returned.
:param chat_id: chat id
:param images: list of PIL images to send
:param caption: caption of image
:param reply_to_message_id: If the message is a reply, ID of the original message
:return: response with the sent message
"""
SEND_MEDIA_GROUP = f'https://api.telegram.org/bot{telegram_token}/sendMediaGroup'
from io import BytesIO
import requests
files = {}
media = []
for i, img in enumerate(images):
with BytesIO() as output:
img.save(output, format='PNG')
output.seek(0)
name = f'photo{i}'
files[name] = output.read()
# a list of InputMediaPhoto. attach refers to the name of the file in the files dict
media.append(dict(type='photo', media=f'attach://{name}'))
media[0]['caption'] = caption
media[0]['parse_mode'] = 'HTML'
return requests.post(SEND_MEDIA_GROUP, data={'chat_id': chat_id, 'media': json.dumps(media),'disable_notification':True, 'reply_to_message_id': reply_to_message_id }, files=files)
class AverageMeter:
def __init__(self, name=None, max_eta=None):
self.name = name
self.max_eta = max_eta
self.reset()
def reset(self):
self.count = self.avg = 0
@torch.no_grad()
def update(self, val, n=1):
eta = self.count / (self.count + n)
if self.max_eta:
eta = min(eta, self.max_eta ** n)
self.avg += (1 - eta) * (val - self.avg)
self.count += n
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def masked_mse_loss(predicted, target, mask, reduction="none"):
masked_predicted = predicted * mask
masked_target = target * mask
return F.mse_loss(masked_predicted, masked_target, reduction=reduction)
# flash attention forwards and backwards
# https://arxiv.org/abs/2205.14135
class FlashAttentionFunction(torch.autograd.function.Function):
@staticmethod
@torch.no_grad()
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
""" Algorithm 2 in the paper """
device = q.device
dtype = q.dtype
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
o = torch.zeros_like(q)
all_row_sums = torch.zeros(
(*q.shape[:-1], 1), dtype=dtype, device=device)
all_row_maxes = torch.full(
(*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)
scale = (q.shape[-1] ** -0.5)
if not exists(mask):
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
else:
mask = rearrange(mask, 'b n -> b 1 1 n')
mask = mask.split(q_bucket_size, dim=-1)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
mask,
all_row_sums.split(q_bucket_size, dim=-2),
all_row_maxes.split(q_bucket_size, dim=-2),
)
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum(
'... i d, ... j d -> ... i j', qc, kc) * scale
if exists(row_mask):
attn_weights.masked_fill_(~row_mask, max_neg_value)
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
device=device).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
attn_weights -= block_row_maxes
exp_weights = torch.exp(attn_weights)
if exists(row_mask):
exp_weights.masked_fill_(~row_mask, 0.)
block_row_sums = exp_weights.sum(
dim=-1, keepdims=True).clamp(min=EPSILON)
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
exp_values = einsum(
'... i j, ... j d -> ... i d', exp_weights, vc)
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
exp_block_row_max_diff = torch.exp(
block_row_maxes - new_row_maxes)
new_row_sums = exp_row_max_diff * row_sums + \
exp_block_row_max_diff * block_row_sums
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_(
(exp_block_row_max_diff / new_row_sums) * exp_values)
row_maxes.copy_(new_row_maxes)
row_sums.copy_(new_row_sums)
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)
return o
@staticmethod
@torch.no_grad()
def backward(ctx, do):
""" Algorithm 4 in the paper """
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
q, k, v, o, l, m = ctx.saved_tensors
device = q.device
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
dq = torch.zeros_like(q)
dk = torch.zeros_like(k)
dv = torch.zeros_like(v)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
do.split(q_bucket_size, dim=-2),
mask,
l.split(q_bucket_size, dim=-2),
m.split(q_bucket_size, dim=-2),
dq.split(q_bucket_size, dim=-2)
)
for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
dk.split(k_bucket_size, dim=-2),
dv.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum(
'... i d, ... j d -> ... i j', qc, kc) * scale
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
device=device).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
exp_attn_weights = torch.exp(attn_weights - mc)
if exists(row_mask):
exp_attn_weights.masked_fill_(~row_mask, 0.)
p = exp_attn_weights / lc
dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc)
dp = einsum('... i d, ... j d -> ... i j', doc, vc)
D = (doc * oc).sum(dim=-1, keepdims=True)
ds = p * scale * (dp - D)
dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc)
dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc)
dqc.add_(dq_chunk)
dkc.add_(dk_chunk)
dvc.add_(dv_chunk)
return dq, dk, dv, None, None, None, None
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
revision=revision,
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "RobertaSeriesModelWithTransformation":
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation
return RobertaSeriesModelWithTransformation
else:
raise ValueError(f"{model_class} is not supported.")
def replace_unet_cross_attn_to_flash_attention():
print("Using FlashAttention")
def forward_flash_attn(self, x, context=None, mask=None):
q_bucket_size = 512
k_bucket_size = 1024
h = self.heads
q = self.to_q(x)
context = context if context is not None else x
context = context.to(x.dtype)
if hasattr(self, 'hypernetwork') and self.hypernetwork is not None:
context_k, context_v = self.hypernetwork.forward(x, context)
context_k = context_k.to(x.dtype)
context_v = context_v.to(x.dtype)
else:
context_k = context
context_v = context
k = self.to_k(context_k)
v = self.to_v(context_v)
del context, x
q, k, v = map(lambda t: rearrange(
t, 'b n (h d) -> b h n d', h=h), (q, k, v))
out = FlashAttentionFunction.apply(q, k, v, mask, False,
q_bucket_size, k_bucket_size)
out = rearrange(out, 'b h n d -> b n (h d)')
# diffusers 0.6.0
if type(self.to_out) is torch.nn.Sequential:
return self.to_out(out)
# diffusers 0.7.0
out = self.to_out[0](out)
out = self.to_out[1](out)
return out
diffusers.models.attention.CrossAttention.forward = forward_flash_attn
class Depth2Img:
def __init__(self,unet,text_encoder,revision,pretrained_model_name_or_path,accelerator):
self.unet = unet
self.text_encoder = text_encoder
self.revision = revision if revision != 'no' else 'fp32'
self.pretrained_model_name_or_path = pretrained_model_name_or_path
self.accelerator = accelerator
self.pipeline = None
def depth_images(self,paths):
if self.pipeline is None:
self.pipeline = DiffusionPipeline.from_pretrained(
self.pretrained_model_name_or_path,
unet=self.accelerator.unwrap_model(self.unet),
text_encoder=self.accelerator.unwrap_model(self.text_encoder),
revision=self.revision,
local_files_only=True,)
self.pipeline.to(self.accelerator.device)
self.vae_scale_factor = 2 ** (len(self.pipeline.vae.config.block_out_channels) - 1)
non_depth_image_files = []
image_paths_by_path = {}
for path in paths:
#if path is list
if isinstance(path, list):
img = Path(path[0])
else:
img = Path(path)
if self.get_depth_image_path(img).exists():
continue
else:
non_depth_image_files.append(img)
image_objects = []
for image_path in non_depth_image_files:
image_instance = Image.open(image_path)
if not image_instance.mode == "RGB":
image_instance = image_instance.convert("RGB")
image_instance = self.pipeline.feature_extractor(
image_instance, return_tensors="pt"
).pixel_values
image_instance = image_instance.to(self.accelerator.device)
image_objects.append((image_path, image_instance))
for image_path, image_instance in image_objects:
path = image_path.parent
ogImg = Image.open(image_path)
ogImg_x = ogImg.size[0]
ogImg_y = ogImg.size[1]
depth_map = self.pipeline.depth_estimator(image_instance).predicted_depth
depth_min = torch.amin(depth_map, dim=[0, 1, 2], keepdim=True)
depth_max = torch.amax(depth_map, dim=[0, 1, 2], keepdim=True)
depth_map = torch.nn.functional.interpolate(depth_map.unsqueeze(1),size=(ogImg_y, ogImg_x),mode="bicubic",align_corners=False,)
depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
depth_map = depth_map[0,:,:]
depth_map_image = transforms.ToPILImage()(depth_map)
depth_map_image = depth_map_image.filter(ImageFilter.GaussianBlur(radius=1))
depth_map_image.save(self.get_depth_image_path(image_path))
#quit()
return 2 ** (len(self.pipeline.vae.config.block_out_channels) - 1)
def get_depth_image_path(self,image_path):
#if image_path is a string, convert it to a Path object
if isinstance(image_path, str):
image_path = Path(image_path)
return image_path.parent / f"{image_path.stem}-depth.png"
def fix_nans_(param, name=None, stats=None):
(std, mean) = stats or (1, 0)
tqdm.write(name, param.shape, param.dtype, mean, std)
param.data = torch.where(param.data.isnan(), torch.randn_like(param.data) * std + mean, param.data).detach() |