File size: 89,729 Bytes
3a18eba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
"""
Copyright 2022 HuggingFace, ShivamShrirao

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import keyboard
import gradio as gr
import argparse
import random
import hashlib
import itertools
import json
import math
import os
import copy
from contextlib import nullcontext
from pathlib import Path
import shutil
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import numpy as np
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel,DiffusionPipeline, DPMSolverMultistepScheduler,EulerDiscreteScheduler
from diffusers.optimization import get_scheduler
from torchvision.transforms import functional
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from typing import Dict, List, Generator, Tuple
from PIL import Image, ImageFile
from diffusers.utils.import_utils import is_xformers_available
from trainer_util import *
from dataloaders_util import *
from discriminator import Discriminator2D
from lion_pytorch import Lion
logger = get_logger(__name__)
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )

    parser.add_argument(
        "--attention",
        type=str,
        choices=["xformers", "flash_attention"],
        default="xformers",
        help="Type of attention to use."
    )
    parser.add_argument(
        "--model_variant",
        type=str,
        default='base',
        required=False,
        help="Train Base/Inpaint/Depth2Img",
    )
    parser.add_argument(
        "--aspect_mode",
        type=str,
        default='dynamic',
        required=False,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--aspect_mode_action_preference",
        type=str,
        default='add',
        required=False,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument('--use_lion',default=False,action="store_true", help='Use the new LION optimizer')
    parser.add_argument('--use_ema',default=False,action="store_true", help='Use EMA for finetuning')
    parser.add_argument('--clip_penultimate',default=False,action="store_true", help='Use penultimate CLIP layer for text embedding')
    parser.add_argument("--conditional_dropout", type=float, default=None,required=False, help="Conditional dropout probability")
    parser.add_argument('--disable_cudnn_benchmark', default=False, action="store_true")
    parser.add_argument('--use_text_files_as_captions', default=False, action="store_true")
    
    parser.add_argument(
            "--sample_from_batch",
            type=int,
            default=0,
            help=("Number of prompts to sample from the batch for inference"),
        )
    parser.add_argument(
        "--flatten_sample_folder",
        default=True,
        action="store_true",
        help="Will save samples in one folder instead of per-epoch",
    )
    parser.add_argument(
            "--stop_text_encoder_training",
            type=int,
            default=999999999999999,
            help=("The epoch at which the text_encoder is no longer trained"),
        )
    parser.add_argument(
        "--use_bucketing",
        default=False,
        action="store_true",
        help="Will save and generate samples before training",
    )
    parser.add_argument(
        "--regenerate_latent_cache",
        default=False,
        action="store_true",
        help="Will save and generate samples before training",
    )
    parser.add_argument(
        "--sample_on_training_start",
        default=False,
        action="store_true",
        help="Will save and generate samples before training",
    )

    parser.add_argument(
        "--add_class_images_to_dataset",
        default=False,
        action="store_true",
        help="will generate and add class images to the dataset without using prior reservation in training",
    )
    parser.add_argument(
        "--auto_balance_concept_datasets",
        default=False,
        action="store_true",
        help="will balance the number of images in each concept dataset to match the minimum number of images in any concept dataset",
    )
    parser.add_argument(
        "--sample_aspect_ratios",
        default=False,
        action="store_true",
        help="sample different aspect ratios for each image",
    )
    parser.add_argument(
        "--dataset_repeats",
        type=int,
        default=1,
        help="repeat the dataset this many times",
    )
    parser.add_argument(
        "--save_every_n_epoch",
        type=int,
        default=1,
        help="save on epoch finished",
    )
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--pretrained_vae_name_or_path",
        type=str,
        default=None,
        help="Path to pretrained vae or vae identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
        help="The prompt with identifier specifying the instance",
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
        help="The prompt to specify images in the same class as provided instance images.",
    )
    parser.add_argument(
        "--save_sample_prompt",
        type=str,
        default=None,
        help="The prompt used to generate sample outputs to save.",
    )
    parser.add_argument(
        "--n_save_sample",
        type=int,
        default=4,
        help="The number of samples to save.",
    )
    parser.add_argument(
        "--sample_height",
        type=int,
        default=512,
        help="The number of samples to save.",
    )
    parser.add_argument(
        "--sample_width",
        type=int,
        default=512,
        help="The number of samples to save.",
    )
    parser.add_argument(
        "--save_guidance_scale",
        type=float,
        default=7.5,
        help="CFG for save sample.",
    )
    parser.add_argument(
        "--save_infer_steps",
        type=int,
        default=30,
        help="The number of inference steps for save sample.",
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
        help="Flag to add prior preservation loss.",
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--with_offset_noise",
        default=False,
        action="store_true",
        help="Flag to offset noise applied to latents.",
    )

    parser.add_argument("--offset_noise_weight", type=float, default=0.1, help="The weight of offset noise applied during training.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
            "Minimal class images for prior preservation loss. If not have enough images, additional images will be"
            " sampled with class_prompt."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="text-inversion-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--center_crop", default=False, action="store_true", help="Whether to center crop images before resizing to resolution"
    )
    parser.add_argument("--train_text_encoder", default=False, action="store_true", help="Whether to train the text encoder")
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        default=False,
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-6,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=float, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--use_8bit_adam", default=False, action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", default=False, action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument("--log_interval", type=int, default=10, help="Log every N steps.")
    parser.add_argument("--sample_step_interval", type=int, default=100000000000000, help="Sample images every N steps.")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16","tf32"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--concepts_list",
        type=str,
        default=None,
        help="Path to json containing multiple concepts, will overwrite parameters like instance_prompt, class_prompt, etc.",
    )
    parser.add_argument("--save_sample_controlled_seed", type=int, action='append', help="Set a seed for an extra sample image to be constantly saved.")
    parser.add_argument("--detect_full_drive", default=True, action="store_true", help="Delete checkpoints when the drive is full.")
    parser.add_argument("--send_telegram_updates", default=False, action="store_true", help="Send Telegram updates.")
    parser.add_argument("--telegram_chat_id", type=str, default="0", help="Telegram chat ID.")
    parser.add_argument("--telegram_token", type=str, default="0", help="Telegram token.")
    parser.add_argument("--use_deepspeed_adam", default=False, action="store_true", help="Use experimental DeepSpeed Adam 8.")
    parser.add_argument('--append_sample_controlled_seed_action', action='append')
    parser.add_argument('--add_sample_prompt', type=str, action='append')
    parser.add_argument('--use_image_names_as_captions', default=False, action="store_true")
    parser.add_argument('--shuffle_captions', default=False, action="store_true")
    parser.add_argument("--masked_training", default=False, required=False, action='store_true', help="Whether to mask parts of the image during training")
    parser.add_argument("--normalize_masked_area_loss", default=False, required=False, action='store_true', help="Normalize the loss, to make it independent of the size of the masked area")
    parser.add_argument("--unmasked_probability", type=float, default=1, required=False, help="Probability of training a step without a mask")
    parser.add_argument("--max_denoising_strength", type=float, default=1, required=False, help="Max denoising steps to train on")
    parser.add_argument('--add_mask_prompt', type=str, default=None, action="append", dest="mask_prompts", help="Prompt for automatic mask creation")
    parser.add_argument('--with_gan', default=False, action="store_true", help="Use GAN (experimental)")
    parser.add_argument("--gan_weight", type=float, default=0.2, required=False, help="Strength of effect GAN has on training")
    parser.add_argument("--gan_warmup", type=float, default=0, required=False, help="Slowly increases GAN weight from zero over this many steps, useful when initializing a GAN discriminator from scratch")
    parser.add_argument('--discriminator_config', default="configs/discriminator_large.json", help="Location of config file to use when initializing a new GAN discriminator")
    parser.add_argument('--sample_from_ema', default=True, action="store_true", help="Generate sample images using the EMA model")
    parser.add_argument('--run_name', type=str, default=None, help="Adds a custom identifier to the sample and checkpoint directories")
    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    return args
    
def main():
    print(f" {bcolors.OKBLUE}Booting Up StableTuner{bcolors.ENDC}") 
    print(f" {bcolors.OKBLUE}Please wait a moment as we load up some stuff...{bcolors.ENDC}") 
    #torch.cuda.set_per_process_memory_fraction(0.5)
    args = parse_args()
    #temp arg
    args.batch_tokens = None
    if args.disable_cudnn_benchmark:
        torch.backends.cudnn.benchmark = False
    else:
        torch.backends.cudnn.benchmark = True
    if args.send_telegram_updates:
        send_telegram_message(f"Booting up StableTuner!\n", args.telegram_chat_id, args.telegram_token)
    logging_dir = Path(args.output_dir, "logs", args.logging_dir)
    if args.run_name:
        main_sample_dir = os.path.join(args.output_dir, f"samples_{args.run_name}")
    else:
        main_sample_dir = os.path.join(args.output_dir, "samples")
    if os.path.exists(main_sample_dir):
            shutil.rmtree(main_sample_dir)
            os.makedirs(main_sample_dir)
    #create logging directory
    if not logging_dir.exists():
        logging_dir.mkdir(parents=True)
    #create output directory
    if not Path(args.output_dir).exists():
        Path(args.output_dir).mkdir(parents=True)
    

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision if args.mixed_precision != 'tf32' else 'no',
        log_with="tensorboard",
        logging_dir=logging_dir,
    )

    # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
    # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
    # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
    if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
        raise ValueError(
            "Gradient accumulation is not supported when training the text encoder in distributed training. "
            "Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
        )

    if args.seed is not None:
        set_seed(args.seed)

    if args.concepts_list is None:
        args.concepts_list = [
            {
                "instance_prompt": args.instance_prompt,
                "class_prompt": args.class_prompt,
                "instance_data_dir": args.instance_data_dir,
                "class_data_dir": args.class_data_dir
            }
        ]
    else:
        with open(args.concepts_list, "r") as f:
            args.concepts_list = json.load(f)

    if args.with_prior_preservation or args.add_class_images_to_dataset:
        pipeline = None
        for concept in args.concepts_list:
            class_images_dir = Path(concept["class_data_dir"])
            class_images_dir.mkdir(parents=True, exist_ok=True)
            cur_class_images = len(list(class_images_dir.iterdir()))

            if cur_class_images < args.num_class_images:
                torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
                if pipeline is None:

                    pipeline = DiffusionPipeline.from_pretrained(
                        args.pretrained_model_name_or_path,
                        safety_checker=None,
                        vae=AutoencoderKL.from_pretrained(args.pretrained_vae_name_or_path or args.pretrained_model_name_or_path,subfolder=None if args.pretrained_vae_name_or_path else "vae" ,safe_serialization=True),
                        torch_dtype=torch_dtype,
                        requires_safety_checker=False,
                    )
                    pipeline.set_progress_bar_config(disable=True)
                    pipeline.to(accelerator.device)
                
                #if args.use_bucketing == False:
                num_new_images = args.num_class_images - cur_class_images
                logger.info(f"Number of class images to sample: {num_new_images}.")

                sample_dataset = PromptDataset(concept["class_prompt"], num_new_images)
                sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
                sample_dataloader = accelerator.prepare(sample_dataloader)
                #else:
                    #create class images that match up to the concept target buckets
                #    instance_images_dir = Path(concept["instance_data_dir"])
                #    cur_instance_images = len(list(instance_images_dir.iterdir()))
                    #target_wh = min(self.aspects, key=lambda aspects:abs(aspects[0]/aspects[1] - image_aspect))
                #    num_new_images = cur_instance_images - cur_class_images
                
                

                with torch.autocast("cuda"):
                    for example in tqdm(
                        sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
                    ):
                        with torch.autocast("cuda"):
                            images = pipeline(example["prompt"],height=args.resolution,width=args.resolution).images
                        for i, image in enumerate(images):
                            hash_image = hashlib.sha1(image.tobytes()).hexdigest()
                            image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                            image.save(image_filename)

        del pipeline
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()
    # Load the tokenizer
    if args.tokenizer_name:
        tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name )
    elif args.pretrained_model_name_or_path:
        #print(os.getcwd())
        tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer" )

    # Load models and create wrapper for stable diffusion
    #text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder" )
    text_encoder = CLIPTextModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="text_encoder",
        revision=args.revision,
    )
    vae = AutoencoderKL.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="vae",
        revision=args.revision,
    )
    unet = UNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="unet",
        revision=args.revision,
        torch_dtype=torch.float32
    )
    
    if args.with_gan:
        if os.path.isdir(os.path.join(args.pretrained_model_name_or_path, "discriminator")):
            discriminator = Discriminator2D.from_pretrained(
                args.pretrained_model_name_or_path,
                subfolder="discriminator",
                revision=args.revision,
            )
        else:
            print(f" {bcolors.WARNING}Discriminator network (GAN) not found. Initializing a new network. It may take a very large number of steps to train.{bcolors.ENDC}")
            if not args.gan_warmup:
                print(f" {bcolors.WARNING}Consider using --gan_warmup to stabilize the model while the discriminator is being trained.{bcolors.ENDC}")
            with open(args.discriminator_config, "r") as f:
                discriminator_config = json.load(f)
            discriminator = Discriminator2D.from_config(discriminator_config)
        
    
    if is_xformers_available() and args.attention=='xformers':
        try:
            vae.enable_xformers_memory_efficient_attention()
            unet.enable_xformers_memory_efficient_attention()
            if args.with_gan:
                discriminator.enable_xformers_memory_efficient_attention()
        except Exception as e:
            logger.warning(
                "Could not enable memory efficient attention. Make sure xformers is installed"
                f" correctly and a GPU is available: {e}"
            )
    elif args.attention=='flash_attention':
        replace_unet_cross_attn_to_flash_attention()

    if args.use_ema == True:
        if os.path.isdir(os.path.join(args.pretrained_model_name_or_path, "unet_ema")):
            ema_unet = UNet2DConditionModel.from_pretrained(
                args.pretrained_model_name_or_path,
                subfolder="unet_ema",
                revision=args.revision,
                torch_dtype=torch.float32
            )
        else:
            ema_unet = copy.deepcopy(unet)
            ema_unet.config["step"] = 0
        for param in ema_unet.parameters():
            param.requires_grad = False

    if args.model_variant == "depth2img":
        d2i = Depth2Img(unet,text_encoder,args.mixed_precision,args.pretrained_model_name_or_path,accelerator)
    vae.requires_grad_(False)
    vae.enable_slicing()
    if not args.train_text_encoder:
        text_encoder.requires_grad_(False)

    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
        if args.train_text_encoder:
            text_encoder.gradient_checkpointing_enable()
        if args.with_gan:
            discriminator.enable_gradient_checkpointing()

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam and args.use_deepspeed_adam==False and args.use_lion==False:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )
        optimizer_class = bnb.optim.AdamW8bit
        print("Using 8-bit Adam")
    elif args.use_8bit_adam and args.use_deepspeed_adam==True:
        try:
            from deepspeed.ops.adam import DeepSpeedCPUAdam
        except ImportError:
            raise ImportError(
                "To use 8-bit DeepSpeed Adam, try updating your cuda and deepspeed integrations."
            )
        optimizer_class = DeepSpeedCPUAdam
    elif args.use_lion == True:
        print("Using LION optimizer")
        optimizer_class = Lion
    elif args.use_deepspeed_adam==False and args.use_lion==False and args.use_8bit_adam==False:
        optimizer_class = torch.optim.AdamW
    params_to_optimize = (
        itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
    )
    if args.use_lion == False:
        optimizer = optimizer_class(
            params_to_optimize,
            lr=args.learning_rate,
            betas=(args.adam_beta1, args.adam_beta2),
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
        )
        if args.with_gan:
            optimizer_discriminator = optimizer_class(
                discriminator.parameters(),
                lr=args.learning_rate,
                betas=(args.adam_beta1, args.adam_beta2),
                weight_decay=args.adam_weight_decay,
                eps=args.adam_epsilon,
            )            
    else:
        optimizer = optimizer_class(
            params_to_optimize,
            lr=args.learning_rate,
            betas=(args.adam_beta1, args.adam_beta2),
            weight_decay=args.adam_weight_decay,
            #eps=args.adam_epsilon,
        )
        if args.with_gan:
            optimizer_discriminator = optimizer_class(
                discriminator.parameters(),
                lr=args.learning_rate,
                betas=(args.adam_beta1, args.adam_beta2),
                weight_decay=args.adam_weight_decay,
                #eps=args.adam_epsilon,
            )
    noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")

    if args.use_bucketing:
        train_dataset = AutoBucketing(
            concepts_list=args.concepts_list,
            use_image_names_as_captions=args.use_image_names_as_captions,
            shuffle_captions=args.shuffle_captions,
            batch_size=args.train_batch_size,
            tokenizer=tokenizer,
            add_class_images_to_dataset=args.add_class_images_to_dataset,
            balance_datasets=args.auto_balance_concept_datasets,
            resolution=args.resolution,
            with_prior_loss=False,#args.with_prior_preservation,
            repeats=args.dataset_repeats,
            use_text_files_as_captions=args.use_text_files_as_captions,
            aspect_mode=args.aspect_mode,
            action_preference=args.aspect_mode_action_preference,
            seed=args.seed,
            model_variant=args.model_variant,
            extra_module=None if args.model_variant != "depth2img" else d2i,
            mask_prompts=args.mask_prompts,
            load_mask=args.masked_training,
        )
    else:
        train_dataset = NormalDataset(
        concepts_list=args.concepts_list,
        tokenizer=tokenizer,
        with_prior_preservation=args.with_prior_preservation,
        size=args.resolution,
        center_crop=args.center_crop,
        num_class_images=args.num_class_images,
        use_image_names_as_captions=args.use_image_names_as_captions,
        shuffle_captions=args.shuffle_captions,
        repeats=args.dataset_repeats,
        use_text_files_as_captions=args.use_text_files_as_captions,
        seed = args.seed,
        model_variant=args.model_variant,
        extra_module=None if args.model_variant != "depth2img" else d2i,
        mask_prompts=args.mask_prompts,
        load_mask=args.masked_training,
    )
    def collate_fn(examples):
        #print(examples)
        #print('test')
        input_ids = [example["instance_prompt_ids"] for example in examples]
        tokens = input_ids
        pixel_values = [example["instance_images"] for example in examples]
        mask = None
        if "mask" in examples[0]:
            mask = [example["mask"] for example in examples]
        if args.model_variant == 'depth2img':
            depth = [example["instance_depth_images"] for example in examples]

        #print('test')
        # Concat class and instance examples for prior preservation.
        # We do this to avoid doing two forward passes.
        if args.with_prior_preservation:
            input_ids += [example["class_prompt_ids"] for example in examples]
            pixel_values += [example["class_images"] for example in examples]
            if "mask" in examples[0]:
                mask += [example["class_mask"] for example in examples]
            if args.model_variant == 'depth2img':
                depth = [example["class_depth_images"] for example in examples]
        mask_values = None
        if mask is not None:
            mask_values = torch.stack(mask)
            mask_values = mask_values.to(memory_format=torch.contiguous_format).float()
        if args.model_variant == 'depth2img':
            depth_values = torch.stack(depth)
            depth_values = depth_values.to(memory_format=torch.contiguous_format).float()
        ### no need to do it now when it's loaded by the multiAspectsDataset
        #if args.with_prior_preservation:
        #    input_ids += [example["class_prompt_ids"] for example in examples]
        #    pixel_values += [example["class_images"] for example in examples]
        
        #print(pixel_values)
        #unpack the pixel_values from tensor to list


        pixel_values = torch.stack(pixel_values)
        pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
        input_ids = tokenizer.pad(
            {"input_ids": input_ids},
            padding="max_length",
            max_length=tokenizer.model_max_length,
            return_tensors="pt",\
            ).input_ids

        extra_values = None
        if args.model_variant == 'depth2img':
            extra_values = depth_values

        return {
            "input_ids": input_ids,
            "pixel_values": pixel_values,
            "extra_values": extra_values,
            "mask_values": mask_values,
            "tokens": tokens
        }

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.train_batch_size, shuffle=False, collate_fn=collate_fn, pin_memory=True
    )
    #get the length of the dataset
    train_dataset_length = len(train_dataset)
    #code to check if latent cache needs to be resaved
    #check if last_run.json file exists in logging_dir
    if os.path.exists(logging_dir / "last_run.json"):
        #if it exists, load it
        with open(logging_dir / "last_run.json", "r") as f:
            last_run = json.load(f)
            last_run_batch_size = last_run["batch_size"]
            last_run_dataset_length = last_run["dataset_length"]
            if last_run_batch_size != args.train_batch_size:
                print(f" {bcolors.WARNING}The batch_size has changed since the last run. Regenerating Latent Cache.{bcolors.ENDC}") 

                args.regenerate_latent_cache = True
                #save the new batch_size and dataset_length to last_run.json
            if last_run_dataset_length != train_dataset_length:
                print(f" {bcolors.WARNING}The dataset length has changed since the last run. Regenerating Latent Cache.{bcolors.ENDC}") 

                args.regenerate_latent_cache = True
                #save the new batch_size and dataset_length to last_run.json
        with open(logging_dir / "last_run.json", "w") as f:
            json.dump({"batch_size": args.train_batch_size, "dataset_length": train_dataset_length}, f)
                
    else:
        #if it doesn't exist, create it
        last_run = {"batch_size": args.train_batch_size, "dataset_length": train_dataset_length}
        #create the file
        with open(logging_dir / "last_run.json", "w") as f:
            json.dump(last_run, f)

    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        print("Using fp16")
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        print("Using bf16")
        weight_dtype = torch.bfloat16
    elif args.mixed_precision == "tf32":
        torch.backends.cuda.matmul.allow_tf32 = True
        #torch.set_float32_matmul_precision("medium")

    # Move text_encode and vae to gpu.
    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
    vae.to(accelerator.device, dtype=weight_dtype)
    if args.use_ema == True:
        ema_unet.to(accelerator.device)
    if not args.train_text_encoder:
        text_encoder.to(accelerator.device, dtype=weight_dtype)

    if args.use_bucketing:
        wh = set([tuple(x.target_wh) for x in train_dataset.image_train_items])
    else:
        wh = set([tuple([args.resolution, args.resolution]) for x in train_dataset.image_paths])
    full_mask_by_aspect = {shape: vae.encode(torch.zeros(1, 3, shape[1], shape[0]).to(accelerator.device, dtype=weight_dtype)).latent_dist.mean * 0.18215 for shape in wh}

    cached_dataset = CachedLatentsDataset(batch_size=args.train_batch_size,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    dtype=weight_dtype,
    model_variant=args.model_variant,
    shuffle_per_epoch="False",
    args = args,)

    gen_cache = False
    data_len = len(train_dataloader)
    latent_cache_dir = Path(args.output_dir, "logs", "latent_cache")
    #check if latents_cache.pt exists in the output_dir
    if not os.path.exists(latent_cache_dir):
        os.makedirs(latent_cache_dir)
    for i in range(0,data_len-1):
        if not os.path.exists(os.path.join(latent_cache_dir, f"latents_cache_{i}.pt")):
            gen_cache = True
            break
    if args.regenerate_latent_cache == True:
            files = os.listdir(latent_cache_dir)
            gen_cache = True
            for file in files:
                os.remove(os.path.join(latent_cache_dir,file))
    if gen_cache == False :
        print(f" {bcolors.OKGREEN}Loading Latent Cache from {latent_cache_dir}{bcolors.ENDC}")
        del vae
        if not args.train_text_encoder:
            del text_encoder
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()
        #load all the cached latents into a single dataset
        for i in range(0,data_len-1):
            cached_dataset.add_pt_cache(os.path.join(latent_cache_dir,f"latents_cache_{i}.pt"))
    if gen_cache == True:
        #delete all the cached latents if they exist to avoid problems
        print(f" {bcolors.WARNING}Generating latents cache...{bcolors.ENDC}")
        train_dataset = LatentsDataset([], [], [], [], [], [])
        counter = 0
        ImageFile.LOAD_TRUNCATED_IMAGES = True
        with torch.no_grad():
            for batch in tqdm(train_dataloader, desc="Caching latents", bar_format='%s{l_bar}%s%s{bar}%s%s{r_bar}%s'%(bcolors.OKBLUE,bcolors.ENDC, bcolors.OKBLUE, bcolors.ENDC,bcolors.OKBLUE,bcolors.ENDC,)):
                cached_extra = None
                cached_mask = None
                batch["pixel_values"] = batch["pixel_values"].to(accelerator.device, non_blocking=True, dtype=weight_dtype)
                batch["input_ids"] = batch["input_ids"].to(accelerator.device, non_blocking=True)
                cached_latent = vae.encode(batch["pixel_values"]).latent_dist
                if batch["mask_values"] is not None:
                    cached_mask = functional.resize(batch["mask_values"], size=cached_latent.mean.shape[2:])
                if batch["mask_values"] is not None and args.model_variant == "inpainting":
                    batch["mask_values"] = batch["mask_values"].to(accelerator.device, non_blocking=True, dtype=weight_dtype)
                    cached_extra = vae.encode(batch["pixel_values"] * (1 - batch["mask_values"])).latent_dist
                if args.model_variant == "depth2img":
                    batch["extra_values"] = batch["extra_values"].to(accelerator.device, non_blocking=True, dtype=weight_dtype)
                    cached_extra = functional.resize(batch["extra_values"], size=cached_latent.mean.shape[2:])
                if args.train_text_encoder:
                    cached_text_enc = batch["input_ids"]
                else:
                    cached_text_enc = text_encoder(batch["input_ids"])[0]
                train_dataset.add_latent(cached_latent, cached_text_enc, cached_mask, cached_extra, batch["tokens"])
                del batch
                del cached_latent
                del cached_text_enc
                del cached_mask
                del cached_extra
                torch.save(train_dataset, os.path.join(latent_cache_dir,f"latents_cache_{counter}.pt"))
                cached_dataset.add_pt_cache(os.path.join(latent_cache_dir,f"latents_cache_{counter}.pt"))
                counter += 1
                train_dataset = LatentsDataset([], [], [], [], [], [])
                #if counter % 300 == 0:
                    #train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=1, collate_fn=lambda x: x, shuffle=False)
                #    gc.collect()
                #    torch.cuda.empty_cache()
                #    accelerator.free_memory()

        #clear vram after caching latents
        del vae
        if not args.train_text_encoder:
            del text_encoder
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()
        #load all the cached latents into a single dataset
    train_dataloader = torch.utils.data.DataLoader(cached_dataset, batch_size=1, collate_fn=lambda x: x, shuffle=False)
    print(f" {bcolors.OKGREEN}Latents are ready.{bcolors.ENDC}")
    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = len(train_dataloader)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True
        
    if args.lr_warmup_steps < 1:
        args.lr_warmup_steps = math.floor(args.lr_warmup_steps * args.max_train_steps / args.gradient_accumulation_steps)

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps,
    )

    if args.train_text_encoder and not args.use_ema:
        unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder, optimizer, train_dataloader, lr_scheduler
        )
    elif args.train_text_encoder and args.use_ema:
        unet, text_encoder, ema_unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder, ema_unet, optimizer, train_dataloader, lr_scheduler
        )
    elif not args.train_text_encoder and args.use_ema:
        unet, ema_unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, ema_unet, optimizer, train_dataloader, lr_scheduler
        )
    elif not args.train_text_encoder and not args.use_ema:
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
        )
    if args.with_gan:
        lr_scheduler_discriminator = get_scheduler(
            args.lr_scheduler,
            optimizer=optimizer_discriminator,
            num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
            num_training_steps=args.max_train_steps,
        )
        discriminator, optimizer_discriminator, lr_scheduler_discriminator = accelerator.prepare(discriminator, optimizer_discriminator, lr_scheduler_discriminator)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = len(train_dataloader)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        #print(args.max_train_steps, num_update_steps_per_epoch)
    # Afterwards we recalculate our number of training epochs
    #print(args.max_train_steps, num_update_steps_per_epoch)
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("dreambooth")
    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    def mid_train_playground(step):
        
        tqdm.write(f"{bcolors.WARNING} Booting up GUI{bcolors.ENDC}")
        epoch = step // num_update_steps_per_epoch
        if args.train_text_encoder and args.stop_text_encoder_training == True:
            text_enc_model = accelerator.unwrap_model(text_encoder,True)
        elif args.train_text_encoder and args.stop_text_encoder_training > epoch:
            text_enc_model = accelerator.unwrap_model(text_encoder,True)
        elif args.train_text_encoder == False:
            text_enc_model = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder" )
        elif args.train_text_encoder and args.stop_text_encoder_training <= epoch:
            if 'frozen_directory' in locals():
                text_enc_model = CLIPTextModel.from_pretrained(frozen_directory, subfolder="text_encoder")
            else:
                text_enc_model = accelerator.unwrap_model(text_encoder,True)
        scheduler = DPMSolverMultistepScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
        unwrapped_unet = accelerator.unwrap_model(ema_unet if args.use_ema else unet,True)
            
        pipeline = DiffusionPipeline.from_pretrained(
            args.pretrained_model_name_or_path,
            unet=unwrapped_unet,
            text_encoder=text_enc_model,
            vae=AutoencoderKL.from_pretrained(args.pretrained_vae_name_or_path or args.pretrained_model_name_or_path,subfolder=None if args.pretrained_vae_name_or_path else "vae", safe_serialization=True),
            safety_checker=None,
            torch_dtype=weight_dtype,
            local_files_only=False,
            requires_safety_checker=False,
        )
        pipeline.scheduler = scheduler
        if is_xformers_available() and args.attention=='xformers':
            try:
                vae.enable_xformers_memory_efficient_attention()
                unet.enable_xformers_memory_efficient_attention()
            except Exception as e:
                logger.warning(
                    "Could not enable memory efficient attention. Make sure xformers is installed"
                    f" correctly and a GPU is available: {e}"
                )
        elif args.attention=='flash_attention':
            replace_unet_cross_attn_to_flash_attention()
        pipeline = pipeline.to(accelerator.device)
        def inference(prompt, negative_prompt, num_samples, height=512, width=512, num_inference_steps=50,seed=-1,guidance_scale=7.5):
            with torch.autocast("cuda"), torch.inference_mode():
                if seed != -1:
                    if g_cuda is None:
                        g_cuda = torch.Generator(device='cuda')
                    else:
                        g_cuda.manual_seed(int(seed))
                else:
                    seed = random.randint(0, 100000)
                    g_cuda = torch.Generator(device='cuda')
                    g_cuda.manual_seed(seed)
                    return pipeline(
                            prompt, height=int(height), width=int(width),
                            negative_prompt=negative_prompt,
                            num_images_per_prompt=int(num_samples),
                            num_inference_steps=int(num_inference_steps), guidance_scale=guidance_scale,
                            generator=g_cuda).images, seed
        
        with gr.Blocks() as demo:
            with gr.Row():
                with gr.Column():
                    prompt = gr.Textbox(label="Prompt", value="photo of zwx dog in a bucket")
                    negative_prompt = gr.Textbox(label="Negative Prompt", value="")
                    run = gr.Button(value="Generate")
                    with gr.Row():
                        num_samples = gr.Number(label="Number of Samples", value=4)
                        guidance_scale = gr.Number(label="Guidance Scale", value=7.5)
                    with gr.Row():
                        height = gr.Number(label="Height", value=512)
                        width = gr.Number(label="Width", value=512)
                    with gr.Row():
                        num_inference_steps = gr.Slider(label="Steps", value=25)
                        seed = gr.Number(label="Seed", value=-1)
                with gr.Column():
                    gallery = gr.Gallery()
                    seedDisplay = gr.Number(label="Used Seed:", value=0)

            run.click(inference, inputs=[prompt, negative_prompt, num_samples, height, width, num_inference_steps,seed, guidance_scale], outputs=[gallery,seedDisplay])
        
        demo.launch(share=True,prevent_thread_lock=True)
        tqdm.write(f"{bcolors.WARNING}Gradio Session is active, Press 'F12' to resume training{bcolors.ENDC}")
        keyboard.wait('f12')
        demo.close()
        del demo
        del text_enc_model
        del unwrapped_unet
        del pipeline
        return
    
    def save_and_sample_weights(step,context='checkpoint',save_model=True):
        try:
            #check how many folders are in the output dir
            #if there are more than 5, delete the oldest one
            #save the model
            #save the optimizer
            #save the lr_scheduler
            #save the args
            height = args.sample_height
            width = args.sample_width
            batch_prompts = []
            if args.sample_from_batch > 0:
                num_samples = args.sample_from_batch if args.sample_from_batch < args.train_batch_size else args.train_batch_size
                batch_prompts = []
                tokens = args.batch_tokens
                if tokens != None:
                    allPrompts = list(set([tokenizer.decode(p).replace('<|endoftext|>','').replace('<|startoftext|>', '') for p in tokens]))
                    if len(allPrompts) < num_samples:
                        num_samples = len(allPrompts)
                    batch_prompts = random.sample(allPrompts, num_samples)
                        

            if args.sample_aspect_ratios:
                #choose random aspect ratio from ASPECTS    
                aspect_ratio = random.choice(ASPECTS)
                height = aspect_ratio[0]
                width = aspect_ratio[1]
            if os.path.exists(args.output_dir):
                if args.detect_full_drive==True:
                    folders = os.listdir(args.output_dir)
                    #check how much space is left on the drive
                    total, used, free = shutil.disk_usage("/")
                    if (free // (2**30)) < 4:
                        #folders.remove("0")
                        #get the folder with the lowest number
                        #oldest_folder = min(folder for folder in folders if folder.isdigit())
                        tqdm.write(f"{bcolors.FAIL}Drive is almost full, Please make some space to continue training.{bcolors.ENDC}")
                        if args.send_telegram_updates:
                            try:
                                send_telegram_message(f"Drive is almost full, Please make some space to continue training.", args.telegram_chat_id, args.telegram_token)
                            except:
                                pass
                        #count time
                        import time
                        start_time = time.time()
                        import platform
                        while input("Press Enter to continue... if you're on linux we'll wait 5 minutes for you to make space and continue"):
                            #check if five minutes have passed
                            #check if os is linux
                            if 'Linux' in platform.platform():
                                if time.time() - start_time > 300:
                                    break

                        
                        #oldest_folder_path = os.path.join(args.output_dir, oldest_folder)
                        #shutil.rmtree(oldest_folder_path)
            # Create the pipeline using using the trained modules and save it.
            if accelerator.is_main_process:
                if 'step' in context:
                    #what is the current epoch
                    epoch = step // num_update_steps_per_epoch
                else:
                    epoch = step
                if args.train_text_encoder and args.stop_text_encoder_training == True:
                    text_enc_model = accelerator.unwrap_model(text_encoder,True)
                elif args.train_text_encoder and args.stop_text_encoder_training > epoch:
                    text_enc_model = accelerator.unwrap_model(text_encoder,True)
                elif args.train_text_encoder == False:
                    text_enc_model = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder" )
                elif args.train_text_encoder and args.stop_text_encoder_training <= epoch:
                    if 'frozen_directory' in locals():
                        text_enc_model = CLIPTextModel.from_pretrained(frozen_directory, subfolder="text_encoder")
                    else:
                        text_enc_model = accelerator.unwrap_model(text_encoder,True)
                    
                #scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
                #scheduler = EulerDiscreteScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler", prediction_type="v_prediction")
                scheduler = DPMSolverMultistepScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
                unwrapped_unet = accelerator.unwrap_model(unet,True)
                    
                pipeline = DiffusionPipeline.from_pretrained(
                    args.pretrained_model_name_or_path,
                    unet=unwrapped_unet,
                    text_encoder=text_enc_model,
                    vae=AutoencoderKL.from_pretrained(args.pretrained_vae_name_or_path or args.pretrained_model_name_or_path,subfolder=None if args.pretrained_vae_name_or_path else "vae",),
                    safety_checker=None,
                    torch_dtype=weight_dtype,
                    local_files_only=False,
                    requires_safety_checker=False,
                )
                pipeline.scheduler = scheduler
                if is_xformers_available() and args.attention=='xformers':
                    try:
                        unet.enable_xformers_memory_efficient_attention()
                    except Exception as e:
                        logger.warning(
                            "Could not enable memory efficient attention. Make sure xformers is installed"
                            f" correctly and a GPU is available: {e}"
                        )
                elif args.attention=='flash_attention':
                    replace_unet_cross_attn_to_flash_attention()
                if args.run_name:
                    save_dir = os.path.join(args.output_dir, f"{context}_{step}_{args.run_name}")
                else:
                    save_dir = os.path.join(args.output_dir, f"{context}_{step}")
                if args.flatten_sample_folder:
                    sample_dir = main_sample_dir
                else:
                    sample_dir = os.path.join(main_sample_dir, f"{context}_{step}")
                #if sample dir path does not exist, create it
                
                if args.stop_text_encoder_training == True:
                    save_dir = frozen_directory
                if save_model:
                    pipeline.save_pretrained(save_dir,safe_serialization=True)
                    if args.with_gan:
                        discriminator.save_pretrained(os.path.join(save_dir, "discriminator"), safe_serialization=True)
                    if args.use_ema:
                        ema_unet.save_pretrained(os.path.join(save_dir, "unet_ema"), safe_serialization=True)
                    with open(os.path.join(save_dir, "args.json"), "w") as f:
                        json.dump(args.__dict__, f, indent=2)
                if args.stop_text_encoder_training == True:
                    #delete every folder in frozen_directory but the text encoder
                    for folder in os.listdir(save_dir):
                        if folder != "text_encoder" and os.path.isdir(os.path.join(save_dir, folder)):
                            shutil.rmtree(os.path.join(save_dir, folder))
                imgs = []
                if args.use_ema and args.sample_from_ema:
                    pipeline.unet = ema_unet
                    
                for param in unet.parameters():
                    param.requires_grad = False
                if torch.cuda.is_available():
                    torch.cuda.empty_cache()
                    torch.cuda.ipc_collect()
                    
                if args.add_sample_prompt is not None or batch_prompts != [] and args.stop_text_encoder_training != True:
                    prompts = []
                    if args.add_sample_prompt is not None:
                        for prompt in args.add_sample_prompt:
                            prompts.append(prompt)
                    if batch_prompts != []:
                        for prompt in batch_prompts:
                            prompts.append(prompt)

                    pipeline = pipeline.to(accelerator.device)
                    pipeline.set_progress_bar_config(disable=True)
                    #sample_dir = os.path.join(save_dir, "samples")
                    #if sample_dir exists, delete it
                    if os.path.exists(sample_dir):
                        if not args.flatten_sample_folder:
                            shutil.rmtree(sample_dir)
                    os.makedirs(sample_dir, exist_ok=True)
                    with torch.autocast("cuda"), torch.inference_mode():
                        if args.send_telegram_updates:
                            try:
                                send_telegram_message(f"Generating samples for <b>{step}</b> {context}", args.telegram_chat_id, args.telegram_token)
                            except:
                                pass
                        n_sample = args.n_save_sample
                        if args.save_sample_controlled_seed:
                            n_sample += len(args.save_sample_controlled_seed)
                        progress_bar_sample = tqdm(total=len(prompts)*n_sample,desc="Generating samples")
                        for samplePrompt in prompts:
                            sampleIndex = prompts.index(samplePrompt)
                            #convert sampleIndex to number in words
                            # Data to be written
                            sampleProperties = {
                                "samplePrompt" : samplePrompt
                            }
                            
                            # Serializing json
                            json_object = json.dumps(sampleProperties, indent=4)
                            
                            if args.flatten_sample_folder:
                                sampleName = f"{context}_{step}_prompt_{sampleIndex+1}"
                            else:
                                sampleName = f"prompt_{sampleIndex+1}"
                            
                            if not args.flatten_sample_folder:
                                os.makedirs(os.path.join(sample_dir,sampleName), exist_ok=True)
                            
                            if args.model_variant == 'inpainting':
                                conditioning_image = torch.zeros(1, 3, height, width)
                                mask = torch.ones(1, 1, height, width)
                            if args.model_variant == 'depth2img':
                                #pil new white image
                                test_image = Image.new('RGB', (width, height), (255, 255, 255))
                                depth_image = Image.new('RGB', (width, height), (255, 255, 255))
                                depth = np.array(depth_image.convert("L"))
                                depth = depth.astype(np.float32) / 255.0
                                depth = depth[None, None]
                                depth = torch.from_numpy(depth)
                            for i in range(n_sample):
                                #check if the sample is controlled by a seed
                                if i < args.n_save_sample:
                                    if args.model_variant == 'inpainting':
                                        images = pipeline(samplePrompt, conditioning_image, mask, height=height,width=width, guidance_scale=args.save_guidance_scale, num_inference_steps=args.save_infer_steps).images
                                    if args.model_variant == 'depth2img':
                                        images = pipeline(samplePrompt,image=test_image, guidance_scale=args.save_guidance_scale, num_inference_steps=args.save_infer_steps,strength=1.0).images
                                    elif args.model_variant == 'base':
                                        images = pipeline(samplePrompt,height=height,width=width, guidance_scale=args.save_guidance_scale, num_inference_steps=args.save_infer_steps).images
                                    
                                    if not args.flatten_sample_folder:
                                        images[0].save(os.path.join(sample_dir,sampleName, f"{sampleName}_{i}.png"))
                                    else:
                                        images[0].save(os.path.join(sample_dir, f"{sampleName}_{i}.png"))
                                                                       
                                else:
                                    seed = args.save_sample_controlled_seed[i - args.n_save_sample]
                                    generator = torch.Generator("cuda").manual_seed(seed)
                                    if args.model_variant == 'inpainting':
                                        images = pipeline(samplePrompt,conditioning_image, mask,height=height,width=width, guidance_scale=args.save_guidance_scale, num_inference_steps=args.save_infer_steps, generator=generator).images
                                    if args.model_variant == 'depth2img':
                                        images = pipeline(samplePrompt,image=test_image, guidance_scale=args.save_guidance_scale, num_inference_steps=args.save_infer_steps,generator=generator,strength=1.0).images
                                    elif args.model_variant == 'base':
                                        images = pipeline(samplePrompt,height=height,width=width, guidance_scale=args.save_guidance_scale, num_inference_steps=args.save_infer_steps, generator=generator).images
                                    
                                    if not args.flatten_sample_folder:
                                        images[0].save(os.path.join(sample_dir,sampleName, f"{sampleName}_controlled_seed_{str(seed)}.png"))
                                    else:
                                        images[0].save(os.path.join(sample_dir, f"{sampleName}_controlled_seed_{str(seed)}.png"))
                                progress_bar_sample.update(1)
                            
                            if args.send_telegram_updates:
                                imgs = []
                                #get all the images from the sample folder
                                if not args.flatten_sample_folder:
                                    dir = os.listdir(os.path.join(sample_dir,sampleName))
                                else:
                                    dir = sample_dir

                                for file in dir:
                                    if file.endswith(".png"):
                                        #open the image with pil
                                        img = Image.open(os.path.join(sample_dir,sampleName,file))
                                        imgs.append(img)
                                try:
                                    send_media_group(args.telegram_chat_id,args.telegram_token,imgs, caption=f"Samples for the <b>{step}</b> {context} using the prompt:\n\n<b>{samplePrompt}</b>")
                                except:
                                    pass
                    del pipeline
                    del unwrapped_unet
                    for param in unet.parameters():
                        param.requires_grad = True
                    if torch.cuda.is_available():
                        torch.cuda.empty_cache()
                        torch.cuda.ipc_collect()
                if save_model == True:
                    tqdm.write(f"{bcolors.OKGREEN}Weights saved to {save_dir}{bcolors.ENDC}")
                elif save_model == False and len(imgs) > 0:
                    del imgs
                    tqdm.write(f"{bcolors.OKGREEN}Samples saved to {sample_dir}{bcolors.ENDC}")
                    
        except Exception as e:
            tqdm.write(e)
            tqdm.write(f"{bcolors.FAIL} Error occured during sampling, skipping.{bcolors.ENDC}")
            pass

    @torch.no_grad()
    def update_ema(ema_model, model):
        ema_step = ema_model.config["step"]
        decay = min((ema_step + 1) / (ema_step + 10), 0.9999)
        ema_model.config["step"] += 1
        for (s_param, param) in zip(ema_model.parameters(), model.parameters()):
            if param.requires_grad:
                s_param.add_((1 - decay) * (param - s_param))
            else:
                s_param.copy_(param)
    

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps),bar_format='%s{l_bar}%s%s{bar}%s%s{r_bar}%s'%(bcolors.OKBLUE,bcolors.ENDC, bcolors.OKBLUE, bcolors.ENDC,bcolors.OKBLUE,bcolors.ENDC,), disable=not accelerator.is_local_main_process)
    progress_bar_inter_epoch = tqdm(range(num_update_steps_per_epoch),bar_format='%s{l_bar}%s%s{bar}%s%s{r_bar}%s'%(bcolors.OKBLUE,bcolors.ENDC, bcolors.OKGREEN, bcolors.ENDC,bcolors.OKBLUE,bcolors.ENDC,), disable=not accelerator.is_local_main_process)
    progress_bar_e = tqdm(range(args.num_train_epochs),bar_format='%s{l_bar}%s%s{bar}%s%s{r_bar}%s'%(bcolors.OKBLUE,bcolors.ENDC, bcolors.OKGREEN, bcolors.ENDC,bcolors.OKBLUE,bcolors.ENDC,), disable=not accelerator.is_local_main_process)

    progress_bar.set_description("Overall Steps")
    progress_bar_inter_epoch.set_description("Steps To Epoch")
    progress_bar_e.set_description("Overall Epochs")
    global_step = 0
    loss_avg = AverageMeter("loss_avg", max_eta=0.999)
    gan_loss_avg = AverageMeter("gan_loss_avg", max_eta=0.999)
    text_enc_context = nullcontext() if args.train_text_encoder else torch.no_grad()
    if args.send_telegram_updates:
        try:
            send_telegram_message(f"Starting training with the following settings:\n\n{format_dict(args.__dict__)}", args.telegram_chat_id, args.telegram_token)
        except:
            pass
    try:
        tqdm.write(f"{bcolors.OKBLUE}Starting Training!{bcolors.ENDC}")
        try:
            def toggle_gui(event=None):
                if keyboard.is_pressed("ctrl") and keyboard.is_pressed("shift") and keyboard.is_pressed("g"):
                    tqdm.write(f"{bcolors.WARNING}GUI will boot as soon as the current step is done.{bcolors.ENDC}")
                    nonlocal mid_generation
                    if mid_generation == True:
                        mid_generation = False
                        tqdm.write(f"{bcolors.WARNING}Cancelled GUI.{bcolors.ENDC}")
                    else:
                        mid_generation = True

            def toggle_checkpoint(event=None):
                if keyboard.is_pressed("ctrl") and keyboard.is_pressed("shift") and keyboard.is_pressed("s") and not keyboard.is_pressed("alt"):
                    tqdm.write(f"{bcolors.WARNING}Saving the model as soon as this epoch is done.{bcolors.ENDC}")
                    nonlocal mid_checkpoint
                    if mid_checkpoint == True:
                        mid_checkpoint = False
                        tqdm.write(f"{bcolors.WARNING}Cancelled Checkpointing.{bcolors.ENDC}")
                    else:
                        mid_checkpoint = True

            def toggle_sample(event=None):
                if keyboard.is_pressed("ctrl") and keyboard.is_pressed("shift") and keyboard.is_pressed("p") and not keyboard.is_pressed("alt"):
                    tqdm.write(f"{bcolors.WARNING}Sampling will begin as soon as this epoch is done.{bcolors.ENDC}")
                    nonlocal mid_sample
                    if mid_sample == True:
                        mid_sample = False
                        tqdm.write(f"{bcolors.WARNING}Cancelled Sampling.{bcolors.ENDC}")
                    else:
                        mid_sample = True
            def toggle_checkpoint_step(event=None):
                if keyboard.is_pressed("ctrl") and keyboard.is_pressed("shift") and keyboard.is_pressed("alt") and keyboard.is_pressed("s"):
                    tqdm.write(f"{bcolors.WARNING}Saving the model as soon as this step is done.{bcolors.ENDC}")
                    nonlocal mid_checkpoint_step
                    if mid_checkpoint_step == True:
                        mid_checkpoint_step = False
                        tqdm.write(f"{bcolors.WARNING}Cancelled Checkpointing.{bcolors.ENDC}")
                    else:
                        mid_checkpoint_step = True

            def toggle_sample_step(event=None):
                if keyboard.is_pressed("ctrl") and keyboard.is_pressed("shift") and keyboard.is_pressed("alt") and keyboard.is_pressed("p"):
                    tqdm.write(f"{bcolors.WARNING}Sampling will begin as soon as this step is done.{bcolors.ENDC}")
                    nonlocal mid_sample_step
                    if mid_sample_step == True:
                        mid_sample_step = False
                        tqdm.write(f"{bcolors.WARNING}Cancelled Sampling.{bcolors.ENDC}")
                    else:
                        mid_sample_step = True
            def toggle_quit_and_save_epoch(event=None):
                if keyboard.is_pressed("ctrl") and keyboard.is_pressed("shift") and keyboard.is_pressed("q") and not keyboard.is_pressed("alt"):
                    tqdm.write(f"{bcolors.WARNING}Quitting and saving the model as soon as this epoch is done.{bcolors.ENDC}")
                    nonlocal mid_quit
                    if mid_quit == True:
                        mid_quit = False
                        tqdm.write(f"{bcolors.WARNING}Cancelled Quitting.{bcolors.ENDC}")
                    else:
                        mid_quit = True
            def toggle_quit_and_save_step(event=None):
                if keyboard.is_pressed("ctrl") and keyboard.is_pressed("shift") and keyboard.is_pressed("alt") and keyboard.is_pressed("q"):
                    tqdm.write(f"{bcolors.WARNING}Quitting and saving the model as soon as this step is done.{bcolors.ENDC}")
                    nonlocal mid_quit_step
                    if mid_quit_step == True:
                        mid_quit_step = False
                        tqdm.write(f"{bcolors.WARNING}Cancelled Quitting.{bcolors.ENDC}")
                    else:
                        mid_quit_step = True
            def help(event=None):
                if keyboard.is_pressed("ctrl") and keyboard.is_pressed("h"):
                    print_instructions()
            keyboard.on_press_key("g", toggle_gui)
            keyboard.on_press_key("s", toggle_checkpoint)
            keyboard.on_press_key("p", toggle_sample)
            keyboard.on_press_key("s", toggle_checkpoint_step)
            keyboard.on_press_key("p", toggle_sample_step)
            keyboard.on_press_key("q", toggle_quit_and_save_epoch)
            keyboard.on_press_key("q", toggle_quit_and_save_step)
            keyboard.on_press_key("h", help)
            print_instructions()
        except Exception as e:
            pass

        mid_generation = False
        mid_checkpoint = False
        mid_sample = False
        mid_checkpoint_step = False
        mid_sample_step = False
        mid_quit = False
        mid_quit_step = False
        #lambda set mid_generation to true
        if args.run_name:
            frozen_directory = os.path.join(args.output_dir, f"frozen_text_encoder_{args.run_name}")
        else:
            frozen_directory = os.path.join(args.output_dir, "frozen_text_encoder")
        
        unet_stats = {}
        discriminator_stats = {}

        os.makedirs(main_sample_dir, exist_ok=True)
        with open(os.path.join(main_sample_dir, "args.json"), "w") as f:
            json.dump(args.__dict__, f, indent=2)
        if args.with_gan:
            with open(os.path.join(main_sample_dir, "discriminator_config.json"), "w") as f:
                json.dump(discriminator.config, f, indent=2)
        
        for epoch in range(args.num_train_epochs):
            #every 10 epochs print instructions
            unet.train()
            if args.train_text_encoder:
                text_encoder.train()
            
            #save initial weights
            if args.sample_on_training_start==True and epoch==0:
                save_and_sample_weights(epoch,'start',save_model=False)
            
            if args.train_text_encoder and args.stop_text_encoder_training == epoch:
                args.stop_text_encoder_training = True
                if accelerator.is_main_process:
                    tqdm.write(f"{bcolors.WARNING} Stopping text encoder training{bcolors.ENDC}")   
                    current_percentage = (epoch/args.num_train_epochs)*100
                    #round to the nearest whole number
                    current_percentage = round(current_percentage,0)
                    try:
                        send_telegram_message(f"Text encoder training stopped at epoch {epoch} which is {current_percentage}% of training. Freezing weights and saving.", args.telegram_chat_id, args.telegram_token)   
                    except:
                        pass        
                    if os.path.exists(frozen_directory):
                        #delete the folder if it already exists
                        shutil.rmtree(frozen_directory)
                    os.mkdir(frozen_directory)
                    save_and_sample_weights(epoch,'epoch')
                    args.stop_text_encoder_training = epoch
            progress_bar_inter_epoch.reset(total=num_update_steps_per_epoch)
            for step, batch in enumerate(train_dataloader):
                with accelerator.accumulate(unet):
                    # Convert images to latent space
                    with torch.no_grad():

                        latent_dist = batch[0][0]
                        latents = latent_dist.sample() * 0.18215
                        
                        if args.model_variant == 'inpainting':
                            mask = batch[0][2]
                            mask_mean = batch[0][3]
                            conditioning_latent_dist = batch[0][4]
                            conditioning_latents = conditioning_latent_dist.sample() * 0.18215
                        if args.model_variant == 'depth2img':
                            depth = batch[0][4]
                    if args.sample_from_batch > 0:
                        args.batch_tokens = batch[0][5]
                    # Sample noise that we'll add to the latents
                    # and some extra bits to make it so that the model learns to change the zero-frequency of the component freely
                    # https://www.crosslabs.org/blog/diffusion-with-offset-noise
                    if (args.with_offset_noise == True):
                        noise = torch.randn_like(latents) + (args.offset_noise_weight * torch.randn(latents.shape[0], latents.shape[1], 1, 1).to(accelerator.device))
                    else:
                        noise = torch.randn_like(latents)

                    bsz = latents.shape[0]
                    # Sample a random timestep for each image
                    timesteps = torch.randint(0, int(noise_scheduler.config.num_train_timesteps * args.max_denoising_strength), (bsz,), device=latents.device)
                    timesteps = timesteps.long()

                    # Add noise to the latents according to the noise magnitude at each timestep
                    # (this is the forward diffusion process)
                    noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                    # Get the text embedding for conditioning
                    with text_enc_context:
                        if args.train_text_encoder:
                            if args.clip_penultimate == True:
                                encoder_hidden_states = text_encoder(batch[0][1],output_hidden_states=True)
                                encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states['hidden_states'][-2])
                            else:
                                encoder_hidden_states = text_encoder(batch[0][1])[0]
                        else:
                            encoder_hidden_states = batch[0][1]

                    
                    # Predict the noise residual
                    mask=None
                    if args.model_variant == 'inpainting':
                        if mask is not None and random.uniform(0, 1) < args.unmasked_probability:
                            # for some steps, predict the unmasked image
                            conditioning_latents = torch.stack([full_mask_by_aspect[tuple([latents.shape[3]*8, latents.shape[2]*8])].squeeze()] * bsz)
                            mask = torch.ones(bsz, 1, latents.shape[2], latents.shape[3]).to(accelerator.device, dtype=weight_dtype)
                        noisy_inpaint_latents = torch.concat([noisy_latents, mask, conditioning_latents], 1)
                        model_pred = unet(noisy_inpaint_latents, timesteps, encoder_hidden_states).sample
                    elif args.model_variant == 'depth2img':
                        noisy_depth_latents = torch.cat([noisy_latents, depth], dim=1)
                        model_pred = unet(noisy_depth_latents, timesteps, encoder_hidden_states, depth).sample
                    elif args.model_variant == "base":
                        model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
                    

                    # Get the target for loss depending on the prediction type
                    if noise_scheduler.config.prediction_type == "epsilon":
                        target = noise
                    elif noise_scheduler.config.prediction_type == "v_prediction":
                        target = noise_scheduler.get_velocity(latents, noise, timesteps)
                    else:
                        raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
                    
                    # GAN stuff
                    # Input: noisy_latents
                    # True output: target
                    # Fake output: model_pred

                    if args.with_gan:
                        # Turn on learning for the discriminator, and do an optimization step
                        for param in discriminator.parameters():
                            param.requires_grad = True

                        pred_fake = discriminator(torch.cat((noisy_latents, model_pred), 1).detach(), encoder_hidden_states)
                        pred_real = discriminator(torch.cat((noisy_latents, target), 1), encoder_hidden_states)
                        discriminator_loss = F.mse_loss(pred_fake, torch.zeros_like(pred_fake), reduction="mean") + F.mse_loss(pred_real, torch.ones_like(pred_real), reduction="mean")
                        if discriminator_loss.isnan():
                            tqdm.write(f"{bcolors.WARNING}Discriminator loss is NAN, skipping GAN update.{bcolors.ENDC}")
                        else:
                            accelerator.backward(discriminator_loss)
                            if accelerator.sync_gradients:
                                accelerator.clip_grad_norm_(discriminator.parameters(), args.max_grad_norm)
                            optimizer_discriminator.step()
                            lr_scheduler_discriminator.step()
                            # Hack to fix NaNs caused by GAN training
                            for name, p in discriminator.named_parameters():
                                if p.isnan().any():
                                    fix_nans_(p, name, discriminator_stats[name])
                                else:
                                    (std, mean) = torch.std_mean(p)
                                    discriminator_stats[name] = (std.item(), mean.item())
                                    del std, mean
                            optimizer_discriminator.zero_grad()
                        del pred_real, pred_fake, discriminator_loss
                        
                        # Turn off learning for the discriminator for the generator optimization step
                        for param in discriminator.parameters():
                            param.requires_grad = False
                    
                    if args.with_prior_preservation:
                        # Chunk the noise and noise_pred into two parts and compute the loss on each part separately.
                        """
                        noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0)
                        noise, noise_prior = torch.chunk(noise, 2, dim=0)

                        # Compute instance loss
                        loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="none").mean([1, 2, 3]).mean()

                        # Compute prior loss
                        prior_loss = F.mse_loss(noise_pred_prior.float(), noise_prior.float(), reduction="mean")

                        # Add the prior loss to the instance loss.
                        loss = loss + args.prior_loss_weight * prior_loss
                        """
                        # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                        model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                        target, target_prior = torch.chunk(target, 2, dim=0)
                        if mask is not None and args.model_variant != "inpainting":
                            loss = masked_mse_loss(model_pred.float(), target.float(), mask, reduction="none").mean([1, 2, 3]).mean()
                            prior_loss = masked_mse_loss(model_pred_prior.float(), target_prior.float(), mask, reduction="mean")
                        else:
                            loss = F.mse_loss(model_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean()
                            prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")

                        # Add the prior loss to the instance loss.
                        loss = loss + args.prior_loss_weight * prior_loss

                        if mask is not None and args.normalize_masked_area_loss:
                            loss = loss / mask_mean

                    else:
                        if mask is not None and args.model_variant != "inpainting":
                            loss = masked_mse_loss(model_pred.float(), target.float(), mask, reduction="none").mean([1, 2, 3])
                            loss = loss.mean()
                        else:
                            loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

                        if mask is not None and args.normalize_masked_area_loss:
                            loss = loss / mask_mean
                            
                    base_loss = loss
                            
                    if args.with_gan:
                        # Add loss from the GAN
                        pred_fake = discriminator(torch.cat((noisy_latents, model_pred), 1), encoder_hidden_states)
                        gan_loss = F.mse_loss(pred_fake, torch.ones_like(pred_fake), reduction="mean")
                        if gan_loss.isnan():
                            tqdm.write(f"{bcolors.WARNING}GAN loss is NAN, skipping GAN loss.{bcolors.ENDC}")
                        else:
                            gan_weight = args.gan_weight
                            if args.gan_warmup and global_step < args.gan_warmup:
                                gan_weight *= global_step / args.gan_warmup
                            loss += gan_weight * gan_loss
                        del pred_fake

                    accelerator.backward(loss)
                    if accelerator.sync_gradients:
                        params_to_clip = (
                            itertools.chain(unet.parameters(), text_encoder.parameters())
                            if args.train_text_encoder
                            else unet.parameters()
                        )
                        accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
                    optimizer.step()
                    lr_scheduler.step()
                    # Hack to fix NaNs caused by GAN training
                    for name, p in unet.named_parameters():
                        if p.isnan().any():
                            fix_nans_(p, name, unet_stats[name])
                        else:
                            (std, mean) = torch.std_mean(p)
                            unet_stats[name] = (std.item(), mean.item())
                            del std, mean
                    optimizer.zero_grad()
                    loss_avg.update(base_loss.detach_())
                    if args.with_gan and not gan_loss.isnan():
                        gan_loss_avg.update(gan_loss.detach_())
                    if args.use_ema == True:
                        update_ema(ema_unet, unet)
                        
                    del loss, model_pred
                    if args.with_prior_preservation:
                        del model_pred_prior

                logs = {"loss": loss_avg.avg.item(), "lr": lr_scheduler.get_last_lr()[0]}
                if args.with_gan:
                    logs["gan_loss"] = gan_loss_avg.avg.item()
                progress_bar.set_postfix(**logs)
                if not global_step % args.log_interval:
                    accelerator.log(logs, step=global_step)
                
                

                if global_step > 0 and not global_step % args.sample_step_interval:
                    save_and_sample_weights(global_step,'step',save_model=False)

                progress_bar.update(1)
                progress_bar_inter_epoch.update(1)
                progress_bar_e.refresh()
                global_step += 1

                if mid_quit_step==True:
                    accelerator.wait_for_everyone()
                    save_and_sample_weights(global_step,'quit_step')
                    quit()
                if mid_generation==True:
                    mid_train_playground(global_step)
                    mid_generation=False
                if mid_checkpoint_step == True:
                    save_and_sample_weights(global_step,'step',save_model=True)
                    mid_checkpoint_step=False
                    mid_sample_step=False
                elif mid_sample_step == True:
                    save_and_sample_weights(global_step,'step',save_model=False)
                    mid_sample_step=False
                if global_step >= args.max_train_steps:
                    break
            progress_bar_e.update(1)
            if mid_quit==True:
                accelerator.wait_for_everyone()
                save_and_sample_weights(epoch,'quit_epoch')
                quit()
            if epoch == args.num_train_epochs - 1:
                save_and_sample_weights(epoch,'epoch',True)
            elif args.save_every_n_epoch and (epoch + 1) % args.save_every_n_epoch == 0:
                save_and_sample_weights(epoch,'epoch',True)
            elif mid_checkpoint==True:
                save_and_sample_weights(epoch,'epoch',True)
                mid_checkpoint=False
                mid_sample=False
            elif mid_sample==True:
                save_and_sample_weights(epoch,'epoch',False)
                mid_sample=False
            accelerator.wait_for_everyone()
    except Exception:
        try:
            send_telegram_message("Something went wrong while training! :(", args.telegram_chat_id, args.telegram_token)
            #save_and_sample_weights(global_step,'checkpoint')
            send_telegram_message(f"Saved checkpoint {global_step} on exit", args.telegram_chat_id, args.telegram_token)
        except Exception:
            pass
        raise
    except KeyboardInterrupt:
        send_telegram_message("Training stopped", args.telegram_chat_id, args.telegram_token)
    try:
        send_telegram_message("Training finished!", args.telegram_chat_id, args.telegram_token)
    except:
        pass

    accelerator.end_training()
    


if __name__ == "__main__":
    main()