--- license: apache-2.0 base_model: openai/whisper-medium.en tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium.en-cit-do015-wd0-lr3e-06-FULL3 results: [] --- # whisper-medium.en-cit-do015-wd0-lr3e-06-FULL3 This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co./openai/whisper-medium.en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6304 - Wer Ortho: 32.2501 - Wer: 23.5222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| | 1.5524 | 0.5256 | 100 | 1.0430 | 42.1375 | 33.6570 | | 1.0535 | 1.0512 | 200 | 0.8779 | 37.1493 | 27.9815 | | 0.8222 | 1.5769 | 300 | 0.7495 | 35.4208 | 26.5674 | | 0.6909 | 2.1025 | 400 | 0.6826 | 33.2082 | 24.5121 | | 0.5843 | 2.6281 | 500 | 0.6558 | 32.8625 | 24.1350 | | 0.5347 | 3.1537 | 600 | 0.6436 | 32.4773 | 23.5693 | | 0.4819 | 3.6794 | 700 | 0.6377 | 33.5243 | 24.4555 | | 0.4922 | 4.2050 | 800 | 0.6338 | 31.9933 | 23.0980 | | 0.4638 | 4.7306 | 900 | 0.6318 | 32.1513 | 23.4845 | | 0.4362 | 5.2562 | 1000 | 0.6304 | 32.2501 | 23.5222 | ### Framework versions - Transformers 4.44.0 - Pytorch 1.13.1+cu117 - Datasets 2.21.0 - Tokenizers 0.19.1