File size: 2,263 Bytes
2254367 fea3b6b 2254367 fea3b6b 2254367 fea3b6b 2254367 fea3b6b 2254367 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
language:
- en
license: apache-2.0
base_model: openai/whisper-medium.en
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: ./3382
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ./3382
This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co./openai/whisper-medium.en) on the 3382 NYC 1000 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6304
- Wer Ortho: 32.2501
- Wer: 23.5222
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|
| 1.5524 | 0.5256 | 100 | 1.0430 | 42.1375 | 33.6570 |
| 1.0535 | 1.0512 | 200 | 0.8779 | 37.1493 | 27.9815 |
| 0.8222 | 1.5769 | 300 | 0.7495 | 35.4208 | 26.5674 |
| 0.6909 | 2.1025 | 400 | 0.6826 | 33.2082 | 24.5121 |
| 0.5843 | 2.6281 | 500 | 0.6558 | 32.8625 | 24.1350 |
| 0.5347 | 3.1537 | 600 | 0.6436 | 32.4773 | 23.5693 |
| 0.4819 | 3.6794 | 700 | 0.6377 | 33.5243 | 24.4555 |
| 0.4922 | 4.2050 | 800 | 0.6338 | 31.9933 | 23.0980 |
| 0.4638 | 4.7306 | 900 | 0.6318 | 32.1513 | 23.4845 |
| 0.4362 | 5.2562 | 1000 | 0.6304 | 32.2501 | 23.5222 |
### Framework versions
- Transformers 4.44.0
- Pytorch 1.13.1+cu117
- Datasets 2.21.0
- Tokenizers 0.19.1
|