--- language: - en license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: ./openai/whisper-large-v3-cit-do015-wd0-lr5e-06-1000 results: [] --- # ./openai/whisper-large-v3-cit-do015-wd0-lr5e-06-1000 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the SF 1000 dataset. It achieves the following results on the evaluation set: - Loss: 0.4753 - Wer Ortho: 23.5867 - Wer: 12.4052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| | No log | 0.4444 | 25 | 1.1494 | 33.5283 | 21.6616 | | 1.2689 | 0.8889 | 50 | 0.6362 | 28.0702 | 14.9090 | | 1.2689 | 1.3333 | 75 | 0.5078 | 24.3275 | 12.2534 | | 0.5452 | 1.7778 | 100 | 0.3860 | 23.1189 | 11.7602 | | 0.5452 | 2.2222 | 125 | 0.3789 | 23.1969 | 11.1912 | | 0.3251 | 2.6667 | 150 | 0.3691 | 24.0546 | 11.4568 | | 0.3251 | 3.1111 | 175 | 0.3545 | 23.9376 | 11.5706 | | 0.2441 | 3.5556 | 200 | 0.3701 | 25.3411 | 13.2018 | | 0.2441 | 4.0 | 225 | 0.3564 | 21.4815 | 9.9393 | | 0.1651 | 4.4444 | 250 | 0.3909 | 22.5731 | 10.3566 | | 0.1651 | 4.8889 | 275 | 0.3708 | 24.6394 | 13.0121 | | 0.1394 | 5.3333 | 300 | 0.3928 | 24.7563 | 13.2018 | | 0.1394 | 5.7778 | 325 | 0.4097 | 24.6784 | 13.2018 | | 0.1062 | 6.2222 | 350 | 0.4270 | 25.3021 | 13.4294 | | 0.1062 | 6.6667 | 375 | 0.4133 | 24.2105 | 12.8225 | | 0.0831 | 7.1111 | 400 | 0.4275 | 23.9766 | 13.0880 | | 0.0831 | 7.5556 | 425 | 0.4592 | 23.1579 | 12.3293 | | 0.065 | 8.0 | 450 | 0.4617 | 23.9376 | 12.5190 | | 0.065 | 8.4444 | 475 | 0.4685 | 23.5088 | 12.4810 | | 0.0558 | 8.8889 | 500 | 0.4753 | 23.5867 | 12.4052 | ### Framework versions - Transformers 4.42.3 - Pytorch 1.13.1+cu117 - Datasets 2.20.0 - Tokenizers 0.19.1