File size: 2,257 Bytes
5980e91
b8cd806
 
5980e91
 
 
 
 
 
 
b8cd806
5980e91
 
 
 
 
 
b8cd806
5980e91
9319b10
5980e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
language:
- en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: ./3479
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ./3479

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the 3479 clips dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5117
- Wer Ortho: 27.4535
- Wer: 19.3463

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer Ortho | Wer     |
|:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|
| 0.8906        | 0.5109 | 100  | 0.6318          | 33.6218   | 25.1010 |
| 0.6428        | 1.0217 | 200  | 0.5620          | 30.8415   | 22.5971 |
| 0.5279        | 1.5326 | 300  | 0.5435          | 32.0107   | 23.8886 |
| 0.4958        | 2.0434 | 400  | 0.5244          | 30.0037   | 21.7800 |
| 0.4238        | 2.5543 | 500  | 0.5171          | 28.4662   | 20.2337 |
| 0.4016        | 3.0651 | 600  | 0.5132          | 28.0980   | 19.8647 |
| 0.3562        | 3.5760 | 700  | 0.5132          | 27.6100   | 19.7505 |
| 0.3467        | 4.0868 | 800  | 0.5103          | 27.1037   | 19.0828 |
| 0.308         | 4.5977 | 900  | 0.5117          | 27.3246   | 19.1618 |
| 0.3174        | 5.1086 | 1000 | 0.5117          | 27.4535   | 19.3463 |


### Framework versions

- Transformers 4.44.0
- Pytorch 1.13.1+cu117
- Datasets 2.21.0
- Tokenizers 0.19.1