--- language: - en license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: ./openai/whisper-large-v3-cit-do015-wd0-lr3e-06-FULL results: [] --- # ./openai/whisper-large-v3-cit-do015-wd0-lr3e-06-FULL This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the FULL dataset. It achieves the following results on the evaluation set: - Loss: 0.5117 - Wer Ortho: 27.7362 - Wer: 18.6050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| | 0.9582 | 0.4773 | 50 | 0.6479 | 34.9922 | 25.6303 | | 0.6764 | 0.9547 | 100 | 0.5605 | 30.9901 | 21.5126 | | 0.5263 | 1.4320 | 150 | 0.5337 | 29.3892 | 20.0168 | | 0.5084 | 1.9093 | 200 | 0.5186 | 28.0842 | 19.1261 | | 0.4226 | 2.3866 | 250 | 0.5132 | 27.9624 | 18.8571 | | 0.4078 | 2.8640 | 300 | 0.5083 | 28.1538 | 19.0420 | | 0.3775 | 3.3413 | 350 | 0.5083 | 28.3974 | 18.8403 | | 0.3532 | 3.8186 | 400 | 0.5093 | 28.1538 | 18.6555 | | 0.3359 | 4.2959 | 450 | 0.5098 | 27.7188 | 18.5210 | | 0.3189 | 4.7733 | 500 | 0.5117 | 27.7362 | 18.6050 | ### Framework versions - Transformers 4.42.4 - Pytorch 1.13.1+cu117 - Datasets 2.20.0 - Tokenizers 0.19.1