--- language: - en license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: ./openai/whisper-large-v3-cit-do015-wd0-lr1e-06-BALANCED results: [] --- # ./openai/whisper-large-v3-cit-do015-wd0-lr1e-06-BALANCED This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the FULL dataset. It achieves the following results on the evaluation set: - Loss: 0.6001 - Wer Ortho: 32.5152 - Wer: 23.0724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| | 1.1025 | 0.8368 | 50 | 0.8647 | 37.5455 | 28.4260 | | 0.9017 | 1.6736 | 100 | 0.7168 | 37.0 | 29.4443 | | 0.7253 | 2.5105 | 150 | 0.6533 | 34.0606 | 25.3710 | | 0.681 | 3.3473 | 200 | 0.6284 | 38.5758 | 30.9281 | | 0.6067 | 4.1841 | 250 | 0.6172 | 34.0909 | 26.3311 | | 0.5794 | 5.0209 | 300 | 0.6089 | 34.0909 | 26.2438 | | 0.5387 | 5.8577 | 350 | 0.6064 | 33.7576 | 25.9529 | | 0.5171 | 6.6946 | 400 | 0.6025 | 32.7273 | 23.2179 | | 0.5322 | 7.5314 | 450 | 0.6006 | 36.0909 | 26.1856 | | 0.5069 | 8.3682 | 500 | 0.6001 | 32.5152 | 23.0724 | ### Framework versions - Transformers 4.42.4 - Pytorch 1.13.1+cu117 - Datasets 2.20.0 - Tokenizers 0.19.1