File size: 1,995 Bytes
8f95fdb
 
bf9c309
 
8f95fdb
 
 
 
 
 
 
bf9c309
8f95fdb
 
 
 
 
 
bf9c309
8f95fdb
bf9c309
8f95fdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: FULL6
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# FULL6

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the 9712 FULL-2024-10-24 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3669
- Wer Ortho: 20.8879
- Wer: 15.0446

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- training_steps: 1200
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer Ortho | Wer     |
|:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|
| 0.6532        | 0.3661 | 200  | 0.4502          | 25.2247   | 18.8841 |
| 0.5127        | 0.7323 | 400  | 0.4048          | 22.5978   | 16.4300 |
| 0.4408        | 1.0984 | 600  | 0.3845          | 21.8987   | 16.3138 |
| 0.3665        | 1.4645 | 800  | 0.3757          | 21.8443   | 16.0030 |
| 0.3589        | 1.8307 | 1000 | 0.3684          | 20.9727   | 15.1085 |
| 0.336         | 2.1968 | 1200 | 0.3669          | 20.8879   | 15.0446 |


### Framework versions

- Transformers 4.45.1
- Pytorch 1.13.1+cu117
- Datasets 3.0.1
- Tokenizers 0.20.0