--- language: - en license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: ./whisper-large-cit-synth-do0.15-wd0-lr1e-05 results: [] --- # ./whisper-large-cit-synth-do0.15-wd0-lr1e-05 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the SF 200 synth 2000 dataset. It achieves the following results on the evaluation set: - Loss: 0.3455 - Wer: 15.0359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.5226 | 0.4040 | 50 | 0.3027 | 17.5235 | | 0.2202 | 0.8081 | 100 | 0.2734 | 16.6022 | | 0.1105 | 1.2121 | 150 | 0.2876 | 16.1047 | | 0.0613 | 1.6162 | 200 | 0.2642 | 14.3542 | | 0.0504 | 2.0202 | 250 | 0.3025 | 14.3910 | | 0.0158 | 2.4242 | 300 | 0.3455 | 15.0359 | ### Framework versions - Transformers 4.41.2 - Pytorch 1.13.1+cu117 - Datasets 2.19.2 - Tokenizers 0.19.1