--- language: - en license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-cit-do1.5-wd1e-3-lr5 results: [] --- # whisper-large-cit-do1.5-wd1e-3-lr5 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the SF 200 dataset. It achieves the following results on the evaluation set: - Loss: 0.8623 - Wer: 27.9176 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.9999 | 0.8889 | 10 | 0.8228 | 34.3249 | | 0.7031 | 1.7778 | 20 | 0.6328 | 32.2654 | | 0.4625 | 2.6667 | 30 | 0.5498 | 30.4348 | | 0.2785 | 3.5556 | 40 | 0.5278 | 32.2654 | | 0.1827 | 4.4444 | 50 | 0.5557 | 28.6041 | | 0.1029 | 5.3333 | 60 | 0.6138 | 28.3753 | | 0.06 | 6.2222 | 70 | 0.6641 | 29.7483 | | 0.0266 | 7.1111 | 80 | 0.7666 | 29.0618 | | 0.0229 | 8.0 | 90 | 0.7114 | 29.9771 | | 0.0143 | 8.8889 | 100 | 0.7417 | 27.0023 | | 0.0183 | 9.7778 | 110 | 0.8423 | 30.8924 | | 0.0115 | 10.6667 | 120 | 0.7061 | 29.0618 | | 0.0091 | 11.5556 | 130 | 0.7661 | 28.8330 | | 0.0029 | 12.4444 | 140 | 0.8232 | 28.1465 | | 0.0064 | 13.3333 | 150 | 0.8213 | 29.5195 | | 0.0032 | 14.2222 | 160 | 0.8389 | 27.6888 | | 0.0021 | 15.1111 | 170 | 0.8511 | 28.3753 | | 0.0023 | 16.0 | 180 | 0.8545 | 28.3753 | | 0.0015 | 16.8889 | 190 | 0.8599 | 28.1465 | | 0.0013 | 17.7778 | 200 | 0.8623 | 27.9176 | ### Framework versions - Transformers 4.41.1 - Pytorch 1.13.1+cu117 - Datasets 2.19.1 - Tokenizers 0.19.1