--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: deit-tiny-patch16-224-finetuned-papsmear results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9117647058823529 --- # deit-tiny-patch16-224-finetuned-papsmear This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3421 - Accuracy: 0.9118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.3521 | 0.9870 | 19 | 0.4595 | 0.8235 | | 0.335 | 1.9740 | 38 | 0.4491 | 0.8603 | | 0.3248 | 2.9610 | 57 | 0.4196 | 0.875 | | 0.3271 | 4.0 | 77 | 0.5467 | 0.8015 | | 0.3286 | 4.9870 | 96 | 0.4768 | 0.8162 | | 0.2854 | 5.9740 | 115 | 0.4147 | 0.8676 | | 0.2291 | 6.9610 | 134 | 0.4321 | 0.8676 | | 0.2619 | 8.0 | 154 | 0.5726 | 0.8235 | | 0.2196 | 8.9870 | 173 | 0.4344 | 0.8676 | | 0.2116 | 9.9740 | 192 | 0.3809 | 0.875 | | 0.1913 | 10.9610 | 211 | 0.3757 | 0.8603 | | 0.1604 | 12.0 | 231 | 0.3551 | 0.8897 | | 0.1307 | 12.9870 | 250 | 0.3330 | 0.8971 | | 0.1425 | 13.9740 | 269 | 0.3421 | 0.9118 | | 0.141 | 14.8052 | 285 | 0.3409 | 0.9118 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1