--- library_name: transformers license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: deit-tiny-patch16-224-finetuned-papsmear results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8235294117647058 --- # deit-tiny-patch16-224-finetuned-papsmear This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4747 - Accuracy: 0.8235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.5381 | 0.9935 | 38 | 1.4222 | 0.3897 | | 1.172 | 1.9869 | 76 | 1.1008 | 0.5882 | | 0.8361 | 2.9804 | 114 | 0.8529 | 0.6618 | | 0.6869 | 4.0 | 153 | 0.9582 | 0.6324 | | 0.4995 | 4.9935 | 191 | 0.6926 | 0.7574 | | 0.4576 | 5.9869 | 229 | 0.4967 | 0.8529 | | 0.4187 | 6.9804 | 267 | 0.5350 | 0.8162 | | 0.4075 | 8.0 | 306 | 0.4903 | 0.8088 | | 0.3585 | 8.9935 | 344 | 0.5252 | 0.7868 | | 0.3528 | 9.9869 | 382 | 0.5027 | 0.8088 | | 0.2788 | 10.9804 | 420 | 0.4503 | 0.8456 | | 0.2419 | 12.0 | 459 | 0.4857 | 0.8309 | | 0.2544 | 12.9935 | 497 | 0.5543 | 0.7868 | | 0.2591 | 13.9869 | 535 | 0.4839 | 0.8382 | | 0.207 | 14.9020 | 570 | 0.4747 | 0.8235 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1