File size: 2,746 Bytes
d7bc196 bac6afa d7bc196 eba306f bac6afa d7bc196 bac6afa d7bc196 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: deit-tiny-patch16-224-finetuned-papsmear
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9117647058823529
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deit-tiny-patch16-224-finetuned-papsmear
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3421
- Accuracy: 0.9118
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.3521 | 0.9870 | 19 | 0.4595 | 0.8235 |
| 0.335 | 1.9740 | 38 | 0.4491 | 0.8603 |
| 0.3248 | 2.9610 | 57 | 0.4196 | 0.875 |
| 0.3271 | 4.0 | 77 | 0.5467 | 0.8015 |
| 0.3286 | 4.9870 | 96 | 0.4768 | 0.8162 |
| 0.2854 | 5.9740 | 115 | 0.4147 | 0.8676 |
| 0.2291 | 6.9610 | 134 | 0.4321 | 0.8676 |
| 0.2619 | 8.0 | 154 | 0.5726 | 0.8235 |
| 0.2196 | 8.9870 | 173 | 0.4344 | 0.8676 |
| 0.2116 | 9.9740 | 192 | 0.3809 | 0.875 |
| 0.1913 | 10.9610 | 211 | 0.3757 | 0.8603 |
| 0.1604 | 12.0 | 231 | 0.3551 | 0.8897 |
| 0.1307 | 12.9870 | 250 | 0.3330 | 0.8971 |
| 0.1425 | 13.9740 | 269 | 0.3421 | 0.9118 |
| 0.141 | 14.8052 | 285 | 0.3409 | 0.9118 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
|