Commit
·
a6bf2ce
1
Parent(s):
50f566c
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import BartForConditionalGeneration, BartTokenizer
|
3 |
+
|
4 |
+
# Load the model and tokenizer from the local directory
|
5 |
+
model_path = "disilbart-med-summary" # Replace with the actual path
|
6 |
+
tokenizer = BartTokenizer.from_pretrained(model_path)
|
7 |
+
model = BartForConditionalGeneration.from_pretrained(model_path)
|
8 |
+
|
9 |
+
# Function to generate summary based on input
|
10 |
+
def generate_summary(input_text):
|
11 |
+
# Tokenize the input text
|
12 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
13 |
+
|
14 |
+
# Generate summary
|
15 |
+
summary_ids = model.generate(input_ids, max_length=4000, num_beams=4, no_repeat_ngram_size=2)
|
16 |
+
|
17 |
+
# Decode the summary
|
18 |
+
summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
19 |
+
return summary_text
|
20 |
+
|
21 |
+
# Streamlit app
|
22 |
+
def main():
|
23 |
+
# Apply custom styling for the title
|
24 |
+
st.markdown("<h3 style='text-align: center; color: #333;'>Medical Summary - Text Generation</h3>", unsafe_allow_html=True)
|
25 |
+
|
26 |
+
# Textbox for user input
|
27 |
+
user_input = st.text_area("Enter Text:", "")
|
28 |
+
|
29 |
+
# Button to trigger text generation
|
30 |
+
if st.button("Generate Summary"):
|
31 |
+
if user_input:
|
32 |
+
# Call the generate_summary function with user input
|
33 |
+
result = generate_summary(user_input)
|
34 |
+
|
35 |
+
# Display the generated summary in a text area with word wrap
|
36 |
+
st.text_area("Generated Summary:", result, key="generated_summary")
|
37 |
+
|
38 |
+
# Run the Streamlit app
|
39 |
+
if __name__ == "__main__":
|
40 |
+
main()
|