File size: 17,842 Bytes
f76fe51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90bd1f
 
 
f76fe51
 
 
 
 
 
 
 
 
6fbcc3b
 
f76fe51
 
 
 
6fbcc3b
 
 
 
f76fe51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
---
license: apache-2.0
language:
- zh
base_model:
- hfl/chinese-macbert-base
pipeline_tag: text-generation
tags:
- csc
- text-correct
- chinses-spelling-correct
- chinese-spelling-check
- 中文拼写纠错
- macbert4csc
---
# macbert4csc_v2
## 概述(macbert4csc_v2)
 - macro-correct, 中文拼写纠错CSC测评(文本纠错), 权重使用
 - 项目地址在[https://github.com/yongzhuo/macro-correct](https://github.com/yongzhuo/macro-correct)
 - 本模型权重为macbert4csc_v2, 使用macbert4csc架构(pycorrector版本), 其特点是在BertForMaskedLM后新加一个分支用于错误检测任务(分类任务, 不交互);
 - 训练时使用了MFT(动态mask 0.2的非错误tokens), 同时det_loss的权重为0.3;
 - 推理时舍弃了macbert后面的部分(det-layer);
 - 如何使用: 1.使用transformers调用; 2.使用[macro-correct](https://github.com/yongzhuo/macro-correct)项目调用; 详情见***三、调用(Usage)***;

## 目录
* [一、测评(Test)](#一、测评(Test))
* [二、结论(Conclusion)](#二、结论(Conclusion))
* [三、调用(Usage)](#三、调用(Usage))
* [四、论文(Paper)](#四、论文(Paper))
* [五、参考(Refer)](#五、参考(Refer))
* [六、引用(Cite)](#六、引用(Cite))


## 一、测评(Test)
### 1.1 测评数据来源
地址为[Macropodus/csc_eval_public](https://huggingface.co./datasets/Macropodus/csc_eval_public), 所有训练数据均来自公网或开源数据, 训练数据为1千万左右, 混淆词典较大;
``` 
1.gen_de3.json(5545): '的地得'纠错, 由人民日报/学习强国/chinese-poetry等高质量数据人工生成;
2.lemon_v2.tet.json(1053): relm论文提出的数据, 多领域拼写纠错数据集(7个领域), ; 包括game(GAM), encyclopedia (ENC), contract (COT), medical care(MEC), car (CAR), novel (NOV), and news (NEW)等领域;
3.acc_rmrb.tet.json(4636): 来自NER-199801(人民日报高质量语料);
4.acc_xxqg.tet.json(5000): 来自学习强国网站的高质量语料;
5.gen_passage.tet.json(10000): 源数据为qwen生成的好词好句, 由几乎所有的开源数据汇总的混淆词典生成;
6.textproof.tet.json(1447): NLP竞赛数据, TextProofreadingCompetition;
7.gen_xxqg.tet.json(5000): 源数据为学习强国网站的高质量语料, 由几乎所有的开源数据汇总的混淆词典生成;
8.faspell.dev.json(1000): 视频字幕通过OCR后获取的数据集; 来自爱奇艺的论文faspell;
9.lomo_tet.json(5000): 主要为音似中文拼写纠错数据集; 来自腾讯; 人工标注的数据集CSCD-NS;
10.mcsc_tet.5000.json(5000): 医学拼写纠错; 来自腾讯医典APP的真实历史日志; 注意论文说该数据集只关注医学实体的纠错, 常用字等的纠错并不关注;
11.ecspell.dev.json(1500): 来自ECSpell论文, 包括(law/med/gov)等三个领域;
12.sighan2013.dev.json(1000): 来自sighan13会议;
13.sighan2014.dev.json(1062): 来自sighan14会议;
14.sighan2015.dev.json(1100): 来自sighan15会议;
```
### 1.2 测评数据预处理
```
测评数据都经过 全角转半角,繁简转化,标点符号标准化等操作;
```

### 1.3 其他说明
```
1.指标带common的极为宽松指标, 同开源项目pycorrector的评估指标;
2.指标带strict的极为严格指标, 同开源项目[wangwang110/CSC](https://github.com/wangwang110/CSC);
3.macbert4mdcspell_v1模型为训练使用mdcspell架构+bert的mlm-loss, 但是推理的时候只用bert-mlm;
4.acc_rmrb/acc_xxqg数据集没有错误, 用于评估模型的误纠率(过度纠错);
5.qwen25_1-5b_pycorrector的模型为shibing624/chinese-text-correction-1.5b, 其训练数据包括了lemon_v2/mcsc_tet/ecspell的验证集和测试集, 其他的bert类模型的训练不包括验证集和测试集;
```


## 二、重要指标
### 2.1 F1(common_cor_f1)
| model/common_cor_f1| avg| gen_de3| lemon_v2| gen_passage| text_proof| gen_xxqg| faspell| lomo_tet| mcsc_tet| ecspell| sighan2013| sighan2014| sighan2015 |
|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|
| macbert4csc_pycorrector| 45.8| 42.44| 42.89| 31.49| 46.31| 26.06| 32.7| 44.83| 27.93| 55.51| 70.89| 61.72| 66.81 |
| bert4csc_v1| 62.28| 93.73| 61.99| 44.79| 68.0| 35.03| 48.28| 61.8| 64.41| 79.11| 77.66| 51.01| 61.54 |
| macbert4csc_v1| 68.55| 96.67| 65.63| 48.4| 75.65| 38.43| 51.76| 70.11| 80.63| 85.55| 81.38| 57.63| 70.7 |
| macbert4csc_v2| 68.6| 96.74| 66.02| 48.26| 75.78| 38.84| 51.91| 70.17| 80.71| 85.61| 80.97| 58.22| 69.95 |
| macbert4mdcspell_v1| 71.1| 96.42| 70.06| 52.55| 79.61| 43.37| 53.85| 70.9| 82.38| 87.46| 84.2| 61.08| 71.32 |
| qwen25_1-5b_pycorrector| 45.11| 27.29| 89.48| 14.61| 83.9| 13.84| 18.2| 36.71| 96.29| 88.2| 36.41| 15.64| 20.73 |

### 2.2 acc(common_cor_acc)
| model/common_cor_acc| avg| gen_de3| lemon_v2| gen_passage| text_proof| gen_xxqg| faspell| lomo_tet| mcsc_tet| ecspell| sighan2013| sighan2014| sighan2015 |
|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|
| macbert4csc_pycorrector| 48.26| 26.96| 28.68| 34.16| 55.29| 28.38| 22.2| 60.96| 57.16| 67.73| 55.9| 68.93| 72.73 |
| bert4csc_v1| 60.76| 88.21| 45.96| 43.13| 68.97| 35.0| 34.0| 65.86| 73.26| 81.8| 64.5| 61.11| 67.27 |
| macbert4csc_v1| 65.34| 93.56| 49.76| 44.98| 74.64| 36.1| 37.0| 73.0| 83.6| 86.87| 69.2| 62.62| 72.73 |
| macbert4csc_v2| 65.22| 93.69| 50.14| 44.92| 74.64| 36.26| 37.0| 72.72| 83.66| 86.93| 68.5| 62.43| 71.73 |
| macbert4mdcspell_v1| 67.15| 93.09| 54.8| 47.71| 78.09| 39.52| 38.8| 71.92| 84.78| 88.27| 73.2| 63.28| 72.36 |
| qwen25_1-5b_pycorrector| 46.09| 15.82| 81.29| 22.96| 82.17| 19.04| 12.8| 50.2| 96.4| 89.13| 22.8| 27.87| 32.55 |

### 2.3 acc(acc_true, thr=0.75)
| model/acc                | avg| acc_rmrb| acc_xxqg |
|:-------------------------|:-----------------|:-----------------|:-----------------|
| macbert4csc_pycorrector  | 99.24| 99.22| 99.26 |
| bert4csc_v1          | 98.71| 98.36| 99.06 |
| macbert4csc_v1           | 97.72| 96.72| 98.72 |
| macbert4csc_v2           | 97.89| 96.98| 98.8 |
| macbert4mdcspell_v1      | 97.75| 96.51| 98.98 |
| qwen25_1-5b_pycorrector  | 82.0| 77.14| 86.86 |

## 二、结论(Conclusion)
```
1.macbert4csc_v1/macbert4csc_v2/macbert4mdcspell_v1等模型使用多种领域数据训练, 比较均衡, 也适合作为第一步的预训练模型, 可用于专有领域数据的继续微调;
2.比较macbert4csc_pycorrector/bertbase4csc_v1/macbert4csc_v2/macbert4mdcspell_v1, 观察表2.3, 可以发现训练数据越多, 准确率提升的同时, 误纠率也会稍微高一些;
3.MFT(Mask-Correct)依旧有效, 不过对于数据量足够的情形提升不明显, 可能也是误纠率升高的一个重要原因;
4.训练数据中也存在文言文数据, 训练好的模型也支持文言文纠错;
5.训练好的模型对"地得的"等高频错误具有较高的识别率和纠错率;
```

## 三、调用(Usage)
### 3.1 使用macro-correct
```
import os
os.environ["MACRO_CORRECT_FLAG_CSC_TOKEN"] = "1"

from macro_correct import correct
### 默认纠错(list输入)
text_list = ["真麻烦你了。希望你们好好的跳无",
             "少先队员因该为老人让坐",
             "机七学习是人工智能领遇最能体现智能的一个分知",
             "一只小鱼船浮在平净的河面上"
             ]
text_csc = correct(text_list)
print("默认纠错(list输入):")
for res_i in text_csc:
    print(res_i)
print("#" * 128)

"""
默认纠错(list输入):
{'index': 0, 'source': '真麻烦你了。希望你们好好的跳无', 'target': '真麻烦你了。希望你们好好地跳舞', 'errors': [['的', '地', 12, 0.6584], ['无', '舞', 14, 1.0]]}
{'index': 1, 'source': '少先队员因该为老人让坐', 'target': '少先队员应该为老人让坐', 'errors': [['因', '应', 4, 0.995]]}
{'index': 2, 'source': '机七学习是人工智能领遇最能体现智能的一个分知', 'target': '机器学习是人工智能领域最能体现智能的一个分支', 'errors': [['七', '器', 1, 0.9998], ['遇', '域', 10, 0.9999], ['知', '支', 21, 1.0]]}
{'index': 3, 'source': '一只小鱼船浮在平净的河面上', 'target': '一只小鱼船浮在平静的河面上', 'errors': [['净', '静', 8, 0.9961]]}
"""
```

### 3.2 使用 transformers
```
# !/usr/bin/python
# -*- coding: utf-8 -*-
# @time    : 2021/2/29 21:41
# @author  : Mo
# @function: transformers直接加载bert类模型测试


import traceback
import time
import sys
import os
os.environ["USE_TORCH"] = "1"
from transformers import BertConfig, BertTokenizer, BertForMaskedLM
import torch

# pretrained_model_name_or_path = "shibing624/macbert4csc-base-chinese"
# pretrained_model_name_or_path = "Macropodus/macbert4mdcspell_v1"
# pretrained_model_name_or_path = "Macropodus/macbert4csc_v1"
pretrained_model_name_or_path = "Macropodus/macbert4csc_v2"
# pretrained_model_name_or_path = "Macropodus/bert4csc_v1"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
max_len = 128

print("load model, please wait a few minute!")
tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path)
bert_config = BertConfig.from_pretrained(pretrained_model_name_or_path)
model = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path)
model.to(device)
print("load model success!")

texts = [
    "机七学习是人工智能领遇最能体现智能的一个分知",
    "我是练习时长两念半的鸽仁练习生蔡徐坤",
    "真麻烦你了。希望你们好好的跳无",
    "他法语说的很好,的语也不错",
    "遇到一位很棒的奴生跟我疗天",
    "我们为这个目标努力不解",
]
len_mid = min(max_len, max([len(t)+2 for t in texts]))

with torch.no_grad():
    outputs = model(**tokenizer(texts, padding=True, max_length=len_mid,
                                return_tensors="pt").to(device))

def get_errors(source, target):
    """   极简方法获取 errors   """
    len_min = min(len(source), len(target))
    errors = []
    for idx in range(len_min):
        if source[idx] != target[idx]:
            errors.append([source[idx], target[idx], idx])
    return errors

result = []
for probs, source in zip(outputs.logits, texts):
    ids = torch.argmax(probs, dim=-1)
    tokens_space = tokenizer.decode(ids[1:-1], skip_special_tokens=False)
    text_new = tokens_space.replace(" ", "")
    target = text_new[:len(source)]
    errors = get_errors(source, target)
    print(source, " => ", target, errors)
    result.append([target, errors])
print(result)
"""
机七学习是人工智能领遇最能体现智能的一个分知  =>  机器学习是人工智能领域最能体现智能的一个分支 [['七', '器', 1], ['遇', '域', 10], ['知', '支', 21]]
我是练习时长两念半的鸽仁练习生蔡徐坤  =>  我是练习时长两年半的个人练习生蔡徐坤 [['念', '年', 7], ['鸽', '个', 10], ['仁', '人', 11]]
真麻烦你了。希望你们好好的跳无  =>  真麻烦你了。希望你们好好地跳舞 [['的', '地', 12], ['无', '舞', 14]]
他法语说的很好,的语也不错  =>  他法语说得很好,德语也不错 [['的', '得', 4], ['的', '德', 8]]
遇到一位很棒的奴生跟我疗天  =>  遇到一位很棒的女生跟我聊天 [['奴', '女', 7], ['疗', '聊', 11]]
我们为这个目标努力不解  =>  我们为这个目标努力不懈 [['解', '懈', 10]]
"""
```

## 四、论文(Paper)
 - 2024-Refining: [Refining Corpora from a Model Calibration Perspective for Chinese](https://arxiv.org/abs/2407.15498)
 - 2024-ReLM: [Chinese Spelling Correction as Rephrasing Language Model](https://arxiv.org/abs/2308.08796)
 - 2024-DICS: [DISC: Plug-and-Play Decoding Intervention with Similarity of Characters for Chinese Spelling Check](https://arxiv.org/abs/2412.12863)

 - 2023-Bi-DCSpell: [A Bi-directional Detector-Corrector Interactive Framework for Chinese Spelling Check]()
 - 2023-BERT-MFT: [Rethinking Masked Language Modeling for Chinese Spelling Correction](https://arxiv.org/abs/2305.17721)
 - 2023-PTCSpell: [PTCSpell: Pre-trained Corrector Based on Character Shape and Pinyin for Chinese Spelling Correction](https://arxiv.org/abs/2212.04068)
 - 2023-DR-CSC: [A Frustratingly Easy Plug-and-Play Detection-and-Reasoning Module for Chinese](https://aclanthology.org/2023.findings-emnlp.771)
 - 2023-DROM: [Disentangled Phonetic Representation for Chinese Spelling Correction](https://arxiv.org/abs/2305.14783)
 - 2023-EGCM: [An Error-Guided Correction Model for Chinese Spelling Error Correction](https://arxiv.org/abs/2301.06323)
 - 2023-IGPI: [Investigating Glyph-Phonetic Information for Chinese Spell Checking: What Works and What’s Next?](https://arxiv.org/abs/2212.04068)
 - 2023-CL: [Contextual Similarity is More Valuable than Character Similarity-An Empirical Study for Chinese Spell Checking]()

 - 2022-CRASpell: [CRASpell: A Contextual Typo Robust Approach to Improve Chinese Spelling Correction](https://aclanthology.org/2022.findings-acl.237)
 - 2022-MDCSpell: [MDCSpell: A Multi-task Detector-Corrector Framework for Chinese Spelling Correction](https://aclanthology.org/2022.findings-acl.98)
 - 2022-SCOPE: [Improving Chinese Spelling Check by Character Pronunciation Prediction: The Effects of Adaptivity and Granularity](https://arxiv.org/abs/2210.10996)
 - 2022-ECOPO: [The Past Mistake is the Future Wisdom: Error-driven Contrastive Probability Optimization for Chinese Spell Checking](https://arxiv.org/abs/2203.00991)

 - 2021-MLMPhonetics: [Correcting Chinese Spelling Errors with Phonetic Pre-training](https://aclanthology.org/2021.findings-acl.198)
 - 2021-ChineseBERT: [ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information](https://aclanthology.org/2021.acl-long.161/)
 - 2021-BERTCrsGad: [Global Attention Decoder for Chinese Spelling Error Correction](https://aclanthology.org/2021.findings-acl.122)
 - 2021-ThinkTwice: [Think Twice: A Post-Processing Approach for the Chinese Spelling Error Correction](https://www.mdpi.com/2076-3417/11/13/5832)
 - 2021-PHMOSpell: [PHMOSpell: Phonological and Morphological Knowledge Guided Chinese Spelling Chec](https://aclanthology.org/2021.acl-long.464)
 - 2021-SpellBERT: [SpellBERT: A Lightweight Pretrained Model for Chinese Spelling Check](https://aclanthology.org/2021.emnlp-main.287)
 - 2021-TwoWays: [Exploration and Exploitation: Two Ways to Improve Chinese Spelling Correction Models](https://aclanthology.org/2021.acl-short.56)
 - 2021-ReaLiSe: [Read, Listen, and See: Leveraging Multimodal Information Helps Chinese Spell Checking](https://arxiv.org/abs/2105.12306)
 - 2021-DCSpell: [DCSpell: A Detector-Corrector Framework for Chinese Spelling Error Correction](https://dl.acm.org/doi/10.1145/3404835.3463050)
 - 2021-PLOME: [PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction](https://aclanthology.org/2021.acl-long.233)
 - 2021-DCN: [Dynamic Connected Networks for Chinese Spelling Check](https://aclanthology.org/2021.findings-acl.216/)

 - 2020-SoftMaskBERT: [Spelling Error Correction with Soft-Masked BERT](https://arxiv.org/abs/2005.07421)
 - 2020-SpellGCN: [SpellGCN:Incorporating Phonological and Visual Similarities into Language Models for Chinese Spelling Check](https://arxiv.org/abs/2004.14166)
 - 2020-ChunkCSC: [Chunk-based Chinese Spelling Check with Global Optimization](https://aclanthology.org/2020.findings-emnlp.184)
 - 2020-MacBERT: [Revisiting Pre-Trained Models for Chinese Natural Language Processing](https://arxiv.org/abs/2004.13922)

 - 2019-FASPell: [FASPell: A Fast, Adaptable, Simple, Powerful Chinese Spell Checker Based On DAE-Decoder Paradigm](https://aclanthology.org/D19-5522)
 - 2018-Hybrid: [A Hybrid Approach to Automatic Corpus Generation for Chinese Spelling Checking](https://aclanthology.org/D18-1273)

 - 2015-Sighan15: [Introduction to SIGHAN 2015 Bake-off for Chinese Spelling Check](https://aclanthology.org/W15-3106/)
 - 2014-Sighan14: [Overview of SIGHAN 2014 Bake-off for Chinese Spelling Check](https://aclanthology.org/W14-6820/)
 - 2013-Sighan13: [Chinese Spelling Check Evaluation at SIGHAN Bake-off 2013](https://aclanthology.org/W13-4406/)

## 五、参考(Refer)
 - [nghuyong/Chinese-text-correction-papers](https://github.com/nghuyong/Chinese-text-correction-papers)
 - [destwang/CTCResources](https://github.com/destwang/CTCResources)
 - [wangwang110/CSC](https://github.com/wangwang110/CSC)
 - [chinese-poetry/chinese-poetry](https://github.com/chinese-poetry/chinese-poetry)
 - [chinese-poetry/huajianji](https://github.com/chinese-poetry/huajianji)
 - [garychowcmu/daizhigev20](https://github.com/garychowcmu/daizhigev20)
 - [yangjianxin1/Firefly](https://github.com/yangjianxin1/Firefly)
 - [Macropodus/xuexiqiangguo_428w](https://huggingface.co./datasets/Macropodus/xuexiqiangguo_428w)
 - [Macropodus/csc_clean_wang271k](https://huggingface.co./datasets/Macropodus/csc_clean_wang271k)
 - [Macropodus/csc_eval_public](https://huggingface.co./datasets//Macropodus/csc_eval_public)
 - [shibing624/pycorrector](https://github.com/shibing624/pycorrector)
 - [iioSnail/MDCSpell_pytorch](https://github.com/iioSnail/MDCSpell_pytorch)
 - [gingasan/lemon](https://github.com/gingasan/lemon)
 - [Claude-Liu/ReLM](https://github.com/Claude-Liu/ReLM)


## 六、引用(Cite)
For citing this work, you can refer to the present GitHub project. For example, with BibTeX:
```
@software{macro-correct,
    url = {https://github.com/yongzhuo/macro-correct},
    author = {Yongzhuo Mo},
    title = {macro-correct},
    year = {2025}
```