File size: 17,842 Bytes
f76fe51 c90bd1f f76fe51 6fbcc3b f76fe51 6fbcc3b f76fe51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
---
license: apache-2.0
language:
- zh
base_model:
- hfl/chinese-macbert-base
pipeline_tag: text-generation
tags:
- csc
- text-correct
- chinses-spelling-correct
- chinese-spelling-check
- 中文拼写纠错
- macbert4csc
---
# macbert4csc_v2
## 概述(macbert4csc_v2)
- macro-correct, 中文拼写纠错CSC测评(文本纠错), 权重使用
- 项目地址在[https://github.com/yongzhuo/macro-correct](https://github.com/yongzhuo/macro-correct)
- 本模型权重为macbert4csc_v2, 使用macbert4csc架构(pycorrector版本), 其特点是在BertForMaskedLM后新加一个分支用于错误检测任务(分类任务, 不交互);
- 训练时使用了MFT(动态mask 0.2的非错误tokens), 同时det_loss的权重为0.3;
- 推理时舍弃了macbert后面的部分(det-layer);
- 如何使用: 1.使用transformers调用; 2.使用[macro-correct](https://github.com/yongzhuo/macro-correct)项目调用; 详情见***三、调用(Usage)***;
## 目录
* [一、测评(Test)](#一、测评(Test))
* [二、结论(Conclusion)](#二、结论(Conclusion))
* [三、调用(Usage)](#三、调用(Usage))
* [四、论文(Paper)](#四、论文(Paper))
* [五、参考(Refer)](#五、参考(Refer))
* [六、引用(Cite)](#六、引用(Cite))
## 一、测评(Test)
### 1.1 测评数据来源
地址为[Macropodus/csc_eval_public](https://huggingface.co./datasets/Macropodus/csc_eval_public), 所有训练数据均来自公网或开源数据, 训练数据为1千万左右, 混淆词典较大;
```
1.gen_de3.json(5545): '的地得'纠错, 由人民日报/学习强国/chinese-poetry等高质量数据人工生成;
2.lemon_v2.tet.json(1053): relm论文提出的数据, 多领域拼写纠错数据集(7个领域), ; 包括game(GAM), encyclopedia (ENC), contract (COT), medical care(MEC), car (CAR), novel (NOV), and news (NEW)等领域;
3.acc_rmrb.tet.json(4636): 来自NER-199801(人民日报高质量语料);
4.acc_xxqg.tet.json(5000): 来自学习强国网站的高质量语料;
5.gen_passage.tet.json(10000): 源数据为qwen生成的好词好句, 由几乎所有的开源数据汇总的混淆词典生成;
6.textproof.tet.json(1447): NLP竞赛数据, TextProofreadingCompetition;
7.gen_xxqg.tet.json(5000): 源数据为学习强国网站的高质量语料, 由几乎所有的开源数据汇总的混淆词典生成;
8.faspell.dev.json(1000): 视频字幕通过OCR后获取的数据集; 来自爱奇艺的论文faspell;
9.lomo_tet.json(5000): 主要为音似中文拼写纠错数据集; 来自腾讯; 人工标注的数据集CSCD-NS;
10.mcsc_tet.5000.json(5000): 医学拼写纠错; 来自腾讯医典APP的真实历史日志; 注意论文说该数据集只关注医学实体的纠错, 常用字等的纠错并不关注;
11.ecspell.dev.json(1500): 来自ECSpell论文, 包括(law/med/gov)等三个领域;
12.sighan2013.dev.json(1000): 来自sighan13会议;
13.sighan2014.dev.json(1062): 来自sighan14会议;
14.sighan2015.dev.json(1100): 来自sighan15会议;
```
### 1.2 测评数据预处理
```
测评数据都经过 全角转半角,繁简转化,标点符号标准化等操作;
```
### 1.3 其他说明
```
1.指标带common的极为宽松指标, 同开源项目pycorrector的评估指标;
2.指标带strict的极为严格指标, 同开源项目[wangwang110/CSC](https://github.com/wangwang110/CSC);
3.macbert4mdcspell_v1模型为训练使用mdcspell架构+bert的mlm-loss, 但是推理的时候只用bert-mlm;
4.acc_rmrb/acc_xxqg数据集没有错误, 用于评估模型的误纠率(过度纠错);
5.qwen25_1-5b_pycorrector的模型为shibing624/chinese-text-correction-1.5b, 其训练数据包括了lemon_v2/mcsc_tet/ecspell的验证集和测试集, 其他的bert类模型的训练不包括验证集和测试集;
```
## 二、重要指标
### 2.1 F1(common_cor_f1)
| model/common_cor_f1| avg| gen_de3| lemon_v2| gen_passage| text_proof| gen_xxqg| faspell| lomo_tet| mcsc_tet| ecspell| sighan2013| sighan2014| sighan2015 |
|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|
| macbert4csc_pycorrector| 45.8| 42.44| 42.89| 31.49| 46.31| 26.06| 32.7| 44.83| 27.93| 55.51| 70.89| 61.72| 66.81 |
| bert4csc_v1| 62.28| 93.73| 61.99| 44.79| 68.0| 35.03| 48.28| 61.8| 64.41| 79.11| 77.66| 51.01| 61.54 |
| macbert4csc_v1| 68.55| 96.67| 65.63| 48.4| 75.65| 38.43| 51.76| 70.11| 80.63| 85.55| 81.38| 57.63| 70.7 |
| macbert4csc_v2| 68.6| 96.74| 66.02| 48.26| 75.78| 38.84| 51.91| 70.17| 80.71| 85.61| 80.97| 58.22| 69.95 |
| macbert4mdcspell_v1| 71.1| 96.42| 70.06| 52.55| 79.61| 43.37| 53.85| 70.9| 82.38| 87.46| 84.2| 61.08| 71.32 |
| qwen25_1-5b_pycorrector| 45.11| 27.29| 89.48| 14.61| 83.9| 13.84| 18.2| 36.71| 96.29| 88.2| 36.41| 15.64| 20.73 |
### 2.2 acc(common_cor_acc)
| model/common_cor_acc| avg| gen_de3| lemon_v2| gen_passage| text_proof| gen_xxqg| faspell| lomo_tet| mcsc_tet| ecspell| sighan2013| sighan2014| sighan2015 |
|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|
| macbert4csc_pycorrector| 48.26| 26.96| 28.68| 34.16| 55.29| 28.38| 22.2| 60.96| 57.16| 67.73| 55.9| 68.93| 72.73 |
| bert4csc_v1| 60.76| 88.21| 45.96| 43.13| 68.97| 35.0| 34.0| 65.86| 73.26| 81.8| 64.5| 61.11| 67.27 |
| macbert4csc_v1| 65.34| 93.56| 49.76| 44.98| 74.64| 36.1| 37.0| 73.0| 83.6| 86.87| 69.2| 62.62| 72.73 |
| macbert4csc_v2| 65.22| 93.69| 50.14| 44.92| 74.64| 36.26| 37.0| 72.72| 83.66| 86.93| 68.5| 62.43| 71.73 |
| macbert4mdcspell_v1| 67.15| 93.09| 54.8| 47.71| 78.09| 39.52| 38.8| 71.92| 84.78| 88.27| 73.2| 63.28| 72.36 |
| qwen25_1-5b_pycorrector| 46.09| 15.82| 81.29| 22.96| 82.17| 19.04| 12.8| 50.2| 96.4| 89.13| 22.8| 27.87| 32.55 |
### 2.3 acc(acc_true, thr=0.75)
| model/acc | avg| acc_rmrb| acc_xxqg |
|:-------------------------|:-----------------|:-----------------|:-----------------|
| macbert4csc_pycorrector | 99.24| 99.22| 99.26 |
| bert4csc_v1 | 98.71| 98.36| 99.06 |
| macbert4csc_v1 | 97.72| 96.72| 98.72 |
| macbert4csc_v2 | 97.89| 96.98| 98.8 |
| macbert4mdcspell_v1 | 97.75| 96.51| 98.98 |
| qwen25_1-5b_pycorrector | 82.0| 77.14| 86.86 |
## 二、结论(Conclusion)
```
1.macbert4csc_v1/macbert4csc_v2/macbert4mdcspell_v1等模型使用多种领域数据训练, 比较均衡, 也适合作为第一步的预训练模型, 可用于专有领域数据的继续微调;
2.比较macbert4csc_pycorrector/bertbase4csc_v1/macbert4csc_v2/macbert4mdcspell_v1, 观察表2.3, 可以发现训练数据越多, 准确率提升的同时, 误纠率也会稍微高一些;
3.MFT(Mask-Correct)依旧有效, 不过对于数据量足够的情形提升不明显, 可能也是误纠率升高的一个重要原因;
4.训练数据中也存在文言文数据, 训练好的模型也支持文言文纠错;
5.训练好的模型对"地得的"等高频错误具有较高的识别率和纠错率;
```
## 三、调用(Usage)
### 3.1 使用macro-correct
```
import os
os.environ["MACRO_CORRECT_FLAG_CSC_TOKEN"] = "1"
from macro_correct import correct
### 默认纠错(list输入)
text_list = ["真麻烦你了。希望你们好好的跳无",
"少先队员因该为老人让坐",
"机七学习是人工智能领遇最能体现智能的一个分知",
"一只小鱼船浮在平净的河面上"
]
text_csc = correct(text_list)
print("默认纠错(list输入):")
for res_i in text_csc:
print(res_i)
print("#" * 128)
"""
默认纠错(list输入):
{'index': 0, 'source': '真麻烦你了。希望你们好好的跳无', 'target': '真麻烦你了。希望你们好好地跳舞', 'errors': [['的', '地', 12, 0.6584], ['无', '舞', 14, 1.0]]}
{'index': 1, 'source': '少先队员因该为老人让坐', 'target': '少先队员应该为老人让坐', 'errors': [['因', '应', 4, 0.995]]}
{'index': 2, 'source': '机七学习是人工智能领遇最能体现智能的一个分知', 'target': '机器学习是人工智能领域最能体现智能的一个分支', 'errors': [['七', '器', 1, 0.9998], ['遇', '域', 10, 0.9999], ['知', '支', 21, 1.0]]}
{'index': 3, 'source': '一只小鱼船浮在平净的河面上', 'target': '一只小鱼船浮在平静的河面上', 'errors': [['净', '静', 8, 0.9961]]}
"""
```
### 3.2 使用 transformers
```
# !/usr/bin/python
# -*- coding: utf-8 -*-
# @time : 2021/2/29 21:41
# @author : Mo
# @function: transformers直接加载bert类模型测试
import traceback
import time
import sys
import os
os.environ["USE_TORCH"] = "1"
from transformers import BertConfig, BertTokenizer, BertForMaskedLM
import torch
# pretrained_model_name_or_path = "shibing624/macbert4csc-base-chinese"
# pretrained_model_name_or_path = "Macropodus/macbert4mdcspell_v1"
# pretrained_model_name_or_path = "Macropodus/macbert4csc_v1"
pretrained_model_name_or_path = "Macropodus/macbert4csc_v2"
# pretrained_model_name_or_path = "Macropodus/bert4csc_v1"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
max_len = 128
print("load model, please wait a few minute!")
tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path)
bert_config = BertConfig.from_pretrained(pretrained_model_name_or_path)
model = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path)
model.to(device)
print("load model success!")
texts = [
"机七学习是人工智能领遇最能体现智能的一个分知",
"我是练习时长两念半的鸽仁练习生蔡徐坤",
"真麻烦你了。希望你们好好的跳无",
"他法语说的很好,的语也不错",
"遇到一位很棒的奴生跟我疗天",
"我们为这个目标努力不解",
]
len_mid = min(max_len, max([len(t)+2 for t in texts]))
with torch.no_grad():
outputs = model(**tokenizer(texts, padding=True, max_length=len_mid,
return_tensors="pt").to(device))
def get_errors(source, target):
""" 极简方法获取 errors """
len_min = min(len(source), len(target))
errors = []
for idx in range(len_min):
if source[idx] != target[idx]:
errors.append([source[idx], target[idx], idx])
return errors
result = []
for probs, source in zip(outputs.logits, texts):
ids = torch.argmax(probs, dim=-1)
tokens_space = tokenizer.decode(ids[1:-1], skip_special_tokens=False)
text_new = tokens_space.replace(" ", "")
target = text_new[:len(source)]
errors = get_errors(source, target)
print(source, " => ", target, errors)
result.append([target, errors])
print(result)
"""
机七学习是人工智能领遇最能体现智能的一个分知 => 机器学习是人工智能领域最能体现智能的一个分支 [['七', '器', 1], ['遇', '域', 10], ['知', '支', 21]]
我是练习时长两念半的鸽仁练习生蔡徐坤 => 我是练习时长两年半的个人练习生蔡徐坤 [['念', '年', 7], ['鸽', '个', 10], ['仁', '人', 11]]
真麻烦你了。希望你们好好的跳无 => 真麻烦你了。希望你们好好地跳舞 [['的', '地', 12], ['无', '舞', 14]]
他法语说的很好,的语也不错 => 他法语说得很好,德语也不错 [['的', '得', 4], ['的', '德', 8]]
遇到一位很棒的奴生跟我疗天 => 遇到一位很棒的女生跟我聊天 [['奴', '女', 7], ['疗', '聊', 11]]
我们为这个目标努力不解 => 我们为这个目标努力不懈 [['解', '懈', 10]]
"""
```
## 四、论文(Paper)
- 2024-Refining: [Refining Corpora from a Model Calibration Perspective for Chinese](https://arxiv.org/abs/2407.15498)
- 2024-ReLM: [Chinese Spelling Correction as Rephrasing Language Model](https://arxiv.org/abs/2308.08796)
- 2024-DICS: [DISC: Plug-and-Play Decoding Intervention with Similarity of Characters for Chinese Spelling Check](https://arxiv.org/abs/2412.12863)
- 2023-Bi-DCSpell: [A Bi-directional Detector-Corrector Interactive Framework for Chinese Spelling Check]()
- 2023-BERT-MFT: [Rethinking Masked Language Modeling for Chinese Spelling Correction](https://arxiv.org/abs/2305.17721)
- 2023-PTCSpell: [PTCSpell: Pre-trained Corrector Based on Character Shape and Pinyin for Chinese Spelling Correction](https://arxiv.org/abs/2212.04068)
- 2023-DR-CSC: [A Frustratingly Easy Plug-and-Play Detection-and-Reasoning Module for Chinese](https://aclanthology.org/2023.findings-emnlp.771)
- 2023-DROM: [Disentangled Phonetic Representation for Chinese Spelling Correction](https://arxiv.org/abs/2305.14783)
- 2023-EGCM: [An Error-Guided Correction Model for Chinese Spelling Error Correction](https://arxiv.org/abs/2301.06323)
- 2023-IGPI: [Investigating Glyph-Phonetic Information for Chinese Spell Checking: What Works and What’s Next?](https://arxiv.org/abs/2212.04068)
- 2023-CL: [Contextual Similarity is More Valuable than Character Similarity-An Empirical Study for Chinese Spell Checking]()
- 2022-CRASpell: [CRASpell: A Contextual Typo Robust Approach to Improve Chinese Spelling Correction](https://aclanthology.org/2022.findings-acl.237)
- 2022-MDCSpell: [MDCSpell: A Multi-task Detector-Corrector Framework for Chinese Spelling Correction](https://aclanthology.org/2022.findings-acl.98)
- 2022-SCOPE: [Improving Chinese Spelling Check by Character Pronunciation Prediction: The Effects of Adaptivity and Granularity](https://arxiv.org/abs/2210.10996)
- 2022-ECOPO: [The Past Mistake is the Future Wisdom: Error-driven Contrastive Probability Optimization for Chinese Spell Checking](https://arxiv.org/abs/2203.00991)
- 2021-MLMPhonetics: [Correcting Chinese Spelling Errors with Phonetic Pre-training](https://aclanthology.org/2021.findings-acl.198)
- 2021-ChineseBERT: [ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information](https://aclanthology.org/2021.acl-long.161/)
- 2021-BERTCrsGad: [Global Attention Decoder for Chinese Spelling Error Correction](https://aclanthology.org/2021.findings-acl.122)
- 2021-ThinkTwice: [Think Twice: A Post-Processing Approach for the Chinese Spelling Error Correction](https://www.mdpi.com/2076-3417/11/13/5832)
- 2021-PHMOSpell: [PHMOSpell: Phonological and Morphological Knowledge Guided Chinese Spelling Chec](https://aclanthology.org/2021.acl-long.464)
- 2021-SpellBERT: [SpellBERT: A Lightweight Pretrained Model for Chinese Spelling Check](https://aclanthology.org/2021.emnlp-main.287)
- 2021-TwoWays: [Exploration and Exploitation: Two Ways to Improve Chinese Spelling Correction Models](https://aclanthology.org/2021.acl-short.56)
- 2021-ReaLiSe: [Read, Listen, and See: Leveraging Multimodal Information Helps Chinese Spell Checking](https://arxiv.org/abs/2105.12306)
- 2021-DCSpell: [DCSpell: A Detector-Corrector Framework for Chinese Spelling Error Correction](https://dl.acm.org/doi/10.1145/3404835.3463050)
- 2021-PLOME: [PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction](https://aclanthology.org/2021.acl-long.233)
- 2021-DCN: [Dynamic Connected Networks for Chinese Spelling Check](https://aclanthology.org/2021.findings-acl.216/)
- 2020-SoftMaskBERT: [Spelling Error Correction with Soft-Masked BERT](https://arxiv.org/abs/2005.07421)
- 2020-SpellGCN: [SpellGCN:Incorporating Phonological and Visual Similarities into Language Models for Chinese Spelling Check](https://arxiv.org/abs/2004.14166)
- 2020-ChunkCSC: [Chunk-based Chinese Spelling Check with Global Optimization](https://aclanthology.org/2020.findings-emnlp.184)
- 2020-MacBERT: [Revisiting Pre-Trained Models for Chinese Natural Language Processing](https://arxiv.org/abs/2004.13922)
- 2019-FASPell: [FASPell: A Fast, Adaptable, Simple, Powerful Chinese Spell Checker Based On DAE-Decoder Paradigm](https://aclanthology.org/D19-5522)
- 2018-Hybrid: [A Hybrid Approach to Automatic Corpus Generation for Chinese Spelling Checking](https://aclanthology.org/D18-1273)
- 2015-Sighan15: [Introduction to SIGHAN 2015 Bake-off for Chinese Spelling Check](https://aclanthology.org/W15-3106/)
- 2014-Sighan14: [Overview of SIGHAN 2014 Bake-off for Chinese Spelling Check](https://aclanthology.org/W14-6820/)
- 2013-Sighan13: [Chinese Spelling Check Evaluation at SIGHAN Bake-off 2013](https://aclanthology.org/W13-4406/)
## 五、参考(Refer)
- [nghuyong/Chinese-text-correction-papers](https://github.com/nghuyong/Chinese-text-correction-papers)
- [destwang/CTCResources](https://github.com/destwang/CTCResources)
- [wangwang110/CSC](https://github.com/wangwang110/CSC)
- [chinese-poetry/chinese-poetry](https://github.com/chinese-poetry/chinese-poetry)
- [chinese-poetry/huajianji](https://github.com/chinese-poetry/huajianji)
- [garychowcmu/daizhigev20](https://github.com/garychowcmu/daizhigev20)
- [yangjianxin1/Firefly](https://github.com/yangjianxin1/Firefly)
- [Macropodus/xuexiqiangguo_428w](https://huggingface.co./datasets/Macropodus/xuexiqiangguo_428w)
- [Macropodus/csc_clean_wang271k](https://huggingface.co./datasets/Macropodus/csc_clean_wang271k)
- [Macropodus/csc_eval_public](https://huggingface.co./datasets//Macropodus/csc_eval_public)
- [shibing624/pycorrector](https://github.com/shibing624/pycorrector)
- [iioSnail/MDCSpell_pytorch](https://github.com/iioSnail/MDCSpell_pytorch)
- [gingasan/lemon](https://github.com/gingasan/lemon)
- [Claude-Liu/ReLM](https://github.com/Claude-Liu/ReLM)
## 六、引用(Cite)
For citing this work, you can refer to the present GitHub project. For example, with BibTeX:
```
@software{macro-correct,
url = {https://github.com/yongzhuo/macro-correct},
author = {Yongzhuo Mo},
title = {macro-correct},
year = {2025}
``` |