# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple from ...extras.logging import get_logger from ..data_utils import Role from .processor_utils import infer_seqlen if TYPE_CHECKING: from transformers import PreTrainedTokenizer, ProcessorMixin from ...hparams import DataArguments from ..mm_plugin import ImageInput, VideoInput from ..template import Template logger = get_logger(__name__) def _encode_unsupervised_example( prompt: Sequence[Dict[str, str]], response: Sequence[Dict[str, str]], system: Optional[str], tools: Optional[str], images: Sequence["ImageInput"], videos: Sequence["VideoInput"], template: "Template", tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"], cutoff_len: int, ) -> Tuple[List[int], List[int]]: if len(response) == 1: messages = prompt + response else: messages = prompt + [{"role": Role.ASSISTANT.value, "content": ""}] messages = template.mm_plugin.process_messages(messages, images, videos, processor) input_ids, labels = template.encode_oneturn(tokenizer, messages, system, tools) if template.efficient_eos: labels += [tokenizer.eos_token_id] input_ids, _ = template.mm_plugin.process_token_ids(input_ids, None, images, videos, tokenizer, processor) source_len, target_len = infer_seqlen(len(input_ids), len(labels), cutoff_len) input_ids = input_ids[:source_len] labels = labels[:target_len] return input_ids, labels def preprocess_unsupervised_dataset( examples: Dict[str, List[Any]], template: "Template", tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"], data_args: "DataArguments", ) -> Dict[str, List[Any]]: # build inputs with format ` X` and labels with format `Y ` model_inputs = defaultdict(list) for i in range(len(examples["_prompt"])): if len(examples["_prompt"][i]) % 2 != 1: logger.warning("Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])) continue input_ids, labels = _encode_unsupervised_example( prompt=examples["_prompt"][i], response=examples["_response"][i], system=examples["_system"][i], tools=examples["_tools"][i], images=examples["_images"][i] or [], videos=examples["_videos"][i] or [], template=template, tokenizer=tokenizer, processor=processor, cutoff_len=data_args.cutoff_len, ) model_inputs["input_ids"].append(input_ids) model_inputs["attention_mask"].append([1] * len(input_ids)) model_inputs["labels"].append(labels) model_inputs["images"].append(examples["_images"][i]) model_inputs["videos"].append(examples["_videos"][i]) return model_inputs def print_unsupervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: print("input_ids:\n{}".format(example["input_ids"])) print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))