# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple from ...extras.constants import IGNORE_INDEX from ...extras.logging import get_logger from .processor_utils import infer_seqlen if TYPE_CHECKING: from transformers import PreTrainedTokenizer, ProcessorMixin from ...hparams import DataArguments from ..mm_plugin import ImageInput, VideoInput from ..template import Template logger = get_logger(__name__) def _encode_pairwise_example( prompt: Sequence[Dict[str, str]], response: Sequence[Dict[str, str]], system: Optional[str], tools: Optional[str], images: Sequence["ImageInput"], videos: Sequence["VideoInput"], template: "Template", tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"], cutoff_len: int, ) -> Tuple[List[int], List[int], List[int], List[int]]: chosen_messages = template.mm_plugin.process_messages(prompt + [response[0]], images, videos, processor) rejected_messages = template.mm_plugin.process_messages(prompt + [response[1]], images, videos, processor) prompt_ids, chosen_ids = template.encode_oneturn(tokenizer, chosen_messages, system, tools) _, rejected_ids = template.encode_oneturn(tokenizer, rejected_messages, system, tools) if template.efficient_eos: chosen_ids += [tokenizer.eos_token_id] rejected_ids += [tokenizer.eos_token_id] prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, images, videos, tokenizer, processor) # consider the response is more important source_len, target_len = infer_seqlen(len(prompt_ids), max(len(chosen_ids), len(rejected_ids)), cutoff_len) prompt_ids = prompt_ids[:source_len] chosen_ids = chosen_ids[:target_len] rejected_ids = rejected_ids[:target_len] chosen_input_ids = prompt_ids + chosen_ids chosen_labels = [IGNORE_INDEX] * source_len + chosen_ids rejected_input_ids = prompt_ids + rejected_ids rejected_labels = [IGNORE_INDEX] * source_len + rejected_ids return chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels def preprocess_pairwise_dataset( examples: Dict[str, List[Any]], template: "Template", tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"], data_args: "DataArguments", ) -> Dict[str, List[Any]]: # build input pairs with format ` X`, `Y1 ` and `Y2 ` model_inputs = defaultdict(list) for i in range(len(examples["_prompt"])): if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) < 2: logger.warning("Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])) continue chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels = _encode_pairwise_example( prompt=examples["_prompt"][i], response=examples["_response"][i], system=examples["_system"][i], tools=examples["_tools"][i], images=examples["_images"][i] or [], videos=examples["_videos"][i] or [], template=template, tokenizer=tokenizer, processor=processor, cutoff_len=data_args.cutoff_len, ) model_inputs["chosen_input_ids"].append(chosen_input_ids) model_inputs["chosen_attention_mask"].append([1] * len(chosen_input_ids)) model_inputs["chosen_labels"].append(chosen_labels) model_inputs["rejected_input_ids"].append(rejected_input_ids) model_inputs["rejected_attention_mask"].append([1] * len(rejected_input_ids)) model_inputs["rejected_labels"].append(rejected_labels) model_inputs["images"].append(examples["_images"][i]) model_inputs["videos"].append(examples["_videos"][i]) return model_inputs def print_pairwise_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: valid_chosen_labels = list(filter(lambda x: x != IGNORE_INDEX, example["chosen_labels"])) valid_rejected_labels = list(filter(lambda x: x != IGNORE_INDEX, example["rejected_labels"])) print("chosen_input_ids:\n{}".format(example["chosen_input_ids"])) print("chosen_inputs:\n{}".format(tokenizer.decode(example["chosen_input_ids"], skip_special_tokens=False))) print("chosen_label_ids:\n{}".format(example["chosen_labels"])) print("chosen_labels:\n{}".format(tokenizer.decode(valid_chosen_labels, skip_special_tokens=False))) print("rejected_input_ids:\n{}".format(example["rejected_input_ids"])) print("rejected_inputs:\n{}".format(tokenizer.decode(example["rejected_input_ids"], skip_special_tokens=False))) print("rejected_label_ids:\n{}".format(example["rejected_labels"])) print("rejected_labels:\n{}".format(tokenizer.decode(valid_rejected_labels, skip_special_tokens=False)))