import torch from speechbrain.inference.interfaces import Pretrained import librosa class ASR(Pretrained): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def encode_batch(self, device, wavs, wav_lens=None, normalize=False): wavs = wavs.to(device) wav_lens = wav_lens.to(device) # Forward encoder + decoder tokens = torch.tensor([[1, 1]]) * self.mods.whisper.config.decoder_start_token_id tokens = tokens.to(device) enc_out, logits, _ = self.mods.whisper(wavs, tokens) log_probs = self.hparams.log_softmax(logits) hyps, _, _, _ = self.hparams.test_search(enc_out.detach(), wav_lens) predicted_words = [self.mods.whisper.tokenizer.decode(token, skip_special_tokens=True).strip() for token in hyps] return predicted_words def filter_repetitions(self, seq, max_repetition_length): seq = list(seq) output = [] max_n = len(seq) // 2 for n in range(max_n, 0, -1): max_repetitions = max(max_repetition_length // n, 1) # Don't need to iterate over impossible n values: # len(seq) can change a lot during iteration if (len(seq) <= n*2) or (len(seq) <= max_repetition_length): continue iterator = enumerate(seq) # Fill first buffers: buffers = [[next(iterator)[1]] for _ in range(n)] for seq_index, token in iterator: current_buffer = seq_index % n if token != buffers[current_buffer][-1]: # No repeat, we can flush some tokens buf_len = sum(map(len, buffers)) flush_start = (current_buffer-buf_len) % n # Keep n-1 tokens, but possibly mark some for removal for flush_index in range(buf_len - buf_len%n): if (buf_len - flush_index) > n-1: to_flush = buffers[(flush_index + flush_start) % n].pop(0) else: to_flush = None # Here, repetitions get removed: if (flush_index // n < max_repetitions) and to_flush is not None: output.append(to_flush) elif (flush_index // n >= max_repetitions) and to_flush is None: output.append(to_flush) buffers[current_buffer].append(token) # At the end, final flush current_buffer += 1 buf_len = sum(map(len, buffers)) flush_start = (current_buffer-buf_len) % n for flush_index in range(buf_len): to_flush = buffers[(flush_index + flush_start) % n].pop(0) # Here, repetitions just get removed: if flush_index // n < max_repetitions: output.append(to_flush) seq = [] to_delete = 0 for token in output: if token is None: to_delete += 1 elif to_delete > 0: to_delete -= 1 else: seq.append(token) output = [] return seq def classify_file(self, path, device): waveform, sr = librosa.load(path, sr=16000) waveform = torch.tensor(waveform).to(device) waveform = waveform.to(device) # Fake a batch: batch = waveform.unsqueeze(0) rel_length = torch.tensor([1.0]).to(device) outputs = self.encode_batch(device, batch, rel_length) outputs = "".join(outputs[0]) return outputs