Porjaz commited on
Commit
2444127
1 Parent(s): 47ad4b9

Create custom_interface_app.py

Browse files
Files changed (1) hide show
  1. custom_interface_app.py +240 -0
custom_interface_app.py ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from speechbrain.inference.interfaces import Pretrained
3
+ import librosa
4
+ import numpy as np
5
+
6
+
7
+ class ASR(Pretrained):
8
+ def __init__(self, *args, **kwargs):
9
+ super().__init__(*args, **kwargs)
10
+
11
+ def encode_batch(self, device, wavs, wav_lens=None, normalize=False):
12
+ wavs = wavs.to(device)
13
+ wav_lens = wav_lens.to(device)
14
+
15
+ # Forward pass
16
+ encoded_outputs = self.mods.encoder_w2v2(wavs.detach())
17
+ # append
18
+ tokens_bos = torch.zeros((wavs.size(0), 1), dtype=torch.long).to(device)
19
+ embedded_tokens = self.mods.embedding(tokens_bos)
20
+ decoder_outputs, _ = self.mods.decoder(embedded_tokens, encoded_outputs, wav_lens)
21
+
22
+ # Output layer for seq2seq log-probabilities
23
+ predictions = self.hparams.test_search(encoded_outputs, wav_lens)[0]
24
+ # predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions]
25
+ predicted_words = []
26
+ for prediction in predictions:
27
+ prediction = [token for token in prediction if token != 0]
28
+ predicted_words.append(self.hparams.tokenizer.decode_ids(prediction).split(" "))
29
+ prediction = []
30
+ for sent in predicted_words:
31
+ sent = self.filter_repetitions(sent, 3)
32
+ prediction.append(sent)
33
+ predicted_words = prediction
34
+ return predicted_words
35
+
36
+ def filter_repetitions(self, seq, max_repetition_length):
37
+ seq = list(seq)
38
+ output = []
39
+ max_n = len(seq) // 2
40
+ for n in range(max_n, 0, -1):
41
+ max_repetitions = max(max_repetition_length // n, 1)
42
+ # Don't need to iterate over impossible n values:
43
+ # len(seq) can change a lot during iteration
44
+ if (len(seq) <= n*2) or (len(seq) <= max_repetition_length):
45
+ continue
46
+ iterator = enumerate(seq)
47
+ # Fill first buffers:
48
+ buffers = [[next(iterator)[1]] for _ in range(n)]
49
+ for seq_index, token in iterator:
50
+ current_buffer = seq_index % n
51
+ if token != buffers[current_buffer][-1]:
52
+ # No repeat, we can flush some tokens
53
+ buf_len = sum(map(len, buffers))
54
+ flush_start = (current_buffer-buf_len) % n
55
+ # Keep n-1 tokens, but possibly mark some for removal
56
+ for flush_index in range(buf_len - buf_len%n):
57
+ if (buf_len - flush_index) > n-1:
58
+ to_flush = buffers[(flush_index + flush_start) % n].pop(0)
59
+ else:
60
+ to_flush = None
61
+ # Here, repetitions get removed:
62
+ if (flush_index // n < max_repetitions) and to_flush is not None:
63
+ output.append(to_flush)
64
+ elif (flush_index // n >= max_repetitions) and to_flush is None:
65
+ output.append(to_flush)
66
+ buffers[current_buffer].append(token)
67
+ # At the end, final flush
68
+ current_buffer += 1
69
+ buf_len = sum(map(len, buffers))
70
+ flush_start = (current_buffer-buf_len) % n
71
+ for flush_index in range(buf_len):
72
+ to_flush = buffers[(flush_index + flush_start) % n].pop(0)
73
+ # Here, repetitions just get removed:
74
+ if flush_index // n < max_repetitions:
75
+ output.append(to_flush)
76
+ seq = []
77
+ to_delete = 0
78
+ for token in output:
79
+ if token is None:
80
+ to_delete += 1
81
+ elif to_delete > 0:
82
+ to_delete -= 1
83
+ else:
84
+ seq.append(token)
85
+ output = []
86
+ return seq
87
+
88
+
89
+ def increase_volume(self, waveform, threshold_db=-25):
90
+ # Measure loudness using RMS
91
+ loudness_vector = librosa.feature.rms(y=waveform)
92
+ average_loudness = np.mean(loudness_vector)
93
+ average_loudness_db = librosa.amplitude_to_db(average_loudness)
94
+
95
+ print(f"Average Loudness: {average_loudness_db} dB")
96
+
97
+ # Check if loudness is below threshold and apply gain if needed
98
+ if average_loudness_db < threshold_db:
99
+ # Calculate gain needed
100
+ gain_db = threshold_db - average_loudness_db
101
+ gain = librosa.db_to_amplitude(gain_db) # Convert dB to amplitude factor
102
+
103
+ # Apply gain to the audio signal
104
+ waveform = waveform * gain
105
+ loudness_vector = librosa.feature.rms(y=waveform)
106
+ average_loudness = np.mean(loudness_vector)
107
+ average_loudness_db = librosa.amplitude_to_db(average_loudness)
108
+
109
+ print(f"Average Loudness: {average_loudness_db} dB")
110
+ return waveform
111
+
112
+
113
+ def classify_file(self, path, device):
114
+ # Load the audio file
115
+ # path = "long_sample.wav"
116
+ waveform, sr = librosa.load(path, sr=16000)
117
+
118
+ # increase the volume if needed
119
+ # waveform = self.increase_volume(waveform)
120
+
121
+ # Get audio length in seconds
122
+ audio_length = len(waveform) / sr
123
+
124
+ if audio_length >= 20:
125
+ print(f"Audio is too long ({audio_length:.2f} seconds), splitting into segments")
126
+ # Detect non-silent segments
127
+
128
+ non_silent_intervals = librosa.effects.split(waveform, top_db=20) # Adjust top_db for sensitivity
129
+
130
+ segments = []
131
+ current_segment = []
132
+ current_length = 0
133
+ max_duration = 20 * sr # Maximum segment duration in samples (20 seconds)
134
+
135
+
136
+ for interval in non_silent_intervals:
137
+ start, end = interval
138
+ segment_part = waveform[start:end]
139
+
140
+ # If adding the next part exceeds max duration, store the segment and start a new one
141
+ if current_length + len(segment_part) > max_duration:
142
+ segments.append(np.concatenate(current_segment))
143
+ current_segment = []
144
+ current_length = 0
145
+
146
+ current_segment.append(segment_part)
147
+ current_length += len(segment_part)
148
+
149
+ # Append the last segment if it's not empty
150
+ if current_segment:
151
+ segments.append(np.concatenate(current_segment))
152
+
153
+ # Process each segment
154
+ outputs = []
155
+ for i, segment in enumerate(segments):
156
+ print(f"Processing segment {i + 1}/{len(segments)}, length: {len(segment) / sr:.2f} seconds")
157
+
158
+ # import soundfile as sf
159
+ # sf.write(f"outputs/segment_{i}.wav", segment, sr)
160
+
161
+ segment_tensor = torch.tensor(segment).to(device)
162
+
163
+ # Fake a batch for the segment
164
+ batch = segment_tensor.unsqueeze(0).to(device)
165
+ rel_length = torch.tensor([1.0]).to(device) # Adjust if necessary
166
+
167
+ # Pass the segment through the ASR model
168
+ segment_output = self.encode_batch(device, batch, rel_length)
169
+ yield segment_output
170
+ else:
171
+ waveform = torch.tensor(waveform).to(device)
172
+ waveform = waveform.to(device)
173
+ # Fake a batch:
174
+ batch = waveform.unsqueeze(0)
175
+ rel_length = torch.tensor([1.0]).to(device)
176
+ outputs = self.encode_batch(device, batch, rel_length)
177
+ yield outputs
178
+
179
+
180
+ def classify_file_whisper(self, path, pipe, device):
181
+ waveform, sr = librosa.load(path, sr=16000)
182
+ transcription = pipe(waveform, generate_kwargs={"language": "macedonian"})["text"]
183
+ return transcription
184
+
185
+
186
+ def classify_file_mms(self, path, processor, model, device):
187
+ # Load the audio file
188
+ waveform, sr = librosa.load(path, sr=16000)
189
+
190
+ # Get audio length in seconds
191
+ audio_length = len(waveform) / sr
192
+
193
+ if audio_length >= 20:
194
+ print(f"MMS Audio is too long ({audio_length:.2f} seconds), splitting into segments")
195
+ # Detect non-silent segments
196
+ non_silent_intervals = librosa.effects.split(waveform, top_db=20) # Adjust top_db for sensitivity
197
+
198
+ segments = []
199
+ current_segment = []
200
+ current_length = 0
201
+ max_duration = 20 * sr # Maximum segment duration in samples (20 seconds)
202
+
203
+
204
+ for interval in non_silent_intervals:
205
+ start, end = interval
206
+ segment_part = waveform[start:end]
207
+
208
+ # If adding the next part exceeds max duration, store the segment and start a new one
209
+ if current_length + len(segment_part) > max_duration:
210
+ segments.append(np.concatenate(current_segment))
211
+ current_segment = []
212
+ current_length = 0
213
+
214
+ current_segment.append(segment_part)
215
+ current_length += len(segment_part)
216
+
217
+ # Append the last segment if it's not empty
218
+ if current_segment:
219
+ segments.append(np.concatenate(current_segment))
220
+
221
+ # Process each segment
222
+ outputs = []
223
+ for i, segment in enumerate(segments):
224
+ print(f"MMS Processing segment {i + 1}/{len(segments)}, length: {len(segment) / sr:.2f} seconds")
225
+
226
+ segment_tensor = torch.tensor(segment).to(device)
227
+
228
+ # Pass the segment through the ASR model
229
+ inputs = processor(segment_tensor, sampling_rate=16_000, return_tensors="pt").to(device)
230
+ outputs = model(**inputs).logits
231
+ ids = torch.argmax(outputs, dim=-1)[0]
232
+ segment_output = processor.decode(ids)
233
+ yield segment_output
234
+ else:
235
+ waveform = torch.tensor(waveform).to(device)
236
+ inputs = processor(waveform, sampling_rate=16_000, return_tensors="pt").to(device)
237
+ outputs = model(**inputs).logits
238
+ ids = torch.argmax(outputs, dim=-1)[0]
239
+ transcription = processor.decode(ids)
240
+ yield transcription