Porjaz's picture
Update hyperparams.yaml
a4e3f59 verified
raw
history blame
4.9 kB
# Seed needs to be set at top of yaml, before objects with parameters are made
seed: 2024
__set_seed: !apply:torch.manual_seed [!ref <seed>]
skip_training: True
# Hparams NEEDED
HPARAMS_NEEDED: ["log_softmax"]
# Modules Needed
MODULES_NEEDED: ["whisper"]
output_folder: !ref output_folder_whisper
pretrained_path: Macedonian-ASR/whisper-large-v3-macedonian-asr
output_wer_folder: !ref <output_folder>/
save_folder: !ref <output_folder>/save
train_log: !ref <output_folder>/train_log.txt
# URL for the biggest Fairseq english whisper model.
whisper_hub: openai/whisper-large-v3
# Normalize inputs with the same normalization done in the paper (https://cdn.openai.com/papers/whisper.pdf). Refer to Appendix C for further information.
normalized_transcripts: False
restore_capitalization: False
# Data files
language: "macedonian"
data_folder: "../../data/combined_data/speechbrain_splits"
accented_letters: True
ckpt_interval_minutes: 30 # save checkpoint every N min
####################### Training Parameters ####################################
freeze_whisper: False
freeze_encoder: True
number_of_epochs: 50
weight_decay: 0.01
lr_whisper: 1e-5
warmup_steps: 500
max_grad_norm: 2.0
precision: fp16 # bf16, fp16 or fp32
eval_precision: fp16
sample_rate: 16000
# With data_parallel batch_size is split into N jobs
batch_size: 6
test_batch_size: 1
grad_accumulation_factor: 2
# Decoding parameters
min_decode_ratio: 0.0
max_decode_ratio: 1.0
test_beam_size: 8
####################### Model Parameters #######################################
train_dataloader_opts:
batch_size: !ref <batch_size>
valid_dataloader_opts:
batch_size: !ref <batch_size>
test_dataloader_opts:
batch_size: !ref <test_batch_size>
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
limit: !ref <number_of_epochs>
############################## Augmentations ###################################
# Speed perturbation
speed_perturb: !new:speechbrain.augment.time_domain.SpeedPerturb
orig_freq: 16000
speeds: [95, 100, 105]
# Frequency drop: randomly drops a number of frequency bands to zero.
drop_freq: !new:speechbrain.augment.time_domain.DropFreq
drop_freq_low: 0
drop_freq_high: 1
drop_freq_count_low: 1
drop_freq_count_high: 3
drop_freq_width: 0.05
# Time drop: randomly drops a number of temporal chunks.
drop_chunk: !new:speechbrain.augment.time_domain.DropChunk
drop_length_low: 1000
drop_length_high: 2000
drop_count_low: 1
drop_count_high: 5
# Augmenter: Combines previously defined augmentations to perform data augmentation
wav_augment: !new:speechbrain.augment.augmenter.Augmenter
concat_original: False
min_augmentations: 1
max_augmentations: 3
augment_prob: 0.5
augmentations: [
!ref <speed_perturb>,
!ref <drop_freq>,
!ref <drop_chunk>]
############################## Models ##########################################
whisper: !new:speechbrain.lobes.models.huggingface_transformers.whisper.Whisper
source: !ref <whisper_hub>
freeze: !ref <freeze_whisper>
freeze_encoder: !ref <freeze_encoder>
save_path: !ref <save_folder>/whisper_checkpoint
language: !ref <language>
task: "transcribe"
log_softmax: !new:speechbrain.nnet.activations.Softmax
apply_log: True
nll_loss: !name:speechbrain.nnet.losses.nll_loss
modules:
whisper: !ref <whisper>
############################## Decoding & optimiser ############################
whisper_opt_class: !name:torch.optim.AdamW
lr: !ref <lr_whisper>
weight_decay: !ref <weight_decay>
valid_search: !new:speechbrain.decoders.seq2seq.S2SWhisperGreedySearcher
model: !ref <whisper>
min_decode_ratio: !ref <min_decode_ratio>
max_decode_ratio: !ref <max_decode_ratio>
test_search: !new:speechbrain.decoders.seq2seq.S2SWhisperBeamSearcher
module: [!ref <whisper>]
min_decode_ratio: !ref <min_decode_ratio>
max_decode_ratio: !ref <max_decode_ratio>
beam_size: !ref <test_beam_size>
lr_annealing_whisper: !new:speechbrain.nnet.schedulers.NoamScheduler
lr_initial: !ref <lr_whisper>
n_warmup_steps: !ref <warmup_steps>
############################## Logging and Pretrainer ##########################
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
checkpoints_dir: !ref <save_folder>
recoverables:
whisper: !ref <whisper>
scheduler_whisper: !ref <lr_annealing_whisper>
counter: !ref <epoch_counter>
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
loadables:
whisper: !ref <whisper>
paths:
whisper: !ref <pretrained_path>/model.ckpt
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
save_file: !ref <train_log>
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
split_tokens: True