File size: 15,417 Bytes
cc94482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abf03fe
 
 
cc94482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
#!/usr/bin/env/python3

import sys
import os

import torch
from torch.utils.data import DataLoader
import torchaudio
from hyperpyyaml import load_hyperpyyaml

import speechbrain as sb
from speechbrain.utils.data_utils import undo_padding
from speechbrain.utils.distributed import if_main_process, run_on_main
import logging
from transformers import AutoTokenizer

from jiwer import wer, cer

logger = logging.getLogger(__name__)


# Define training procedure
class ASR(sb.Brain):
    def compute_forward(self, batch, stage):
        """Forward computations from the waveform batches to the output probabilities."""
        batch = batch.to(self.device)
        wavs, wav_lens = batch.sig
        bos_tokens, bos_tokens_lens = batch.tokens_bos

        if stage == sb.Stage.TRAIN:
            wavs, self.wav_lens = self.hparams.wav_augment(wavs, wav_lens)

        # We compute the padding mask and replace the values with the pad_token_id
        # that the Whisper decoder expect to see.
        abs_tokens_lens = (bos_tokens_lens * bos_tokens.shape[1]).long()
        pad_mask = (torch.arange(abs_tokens_lens.max(), device=self.device)[None, :] < abs_tokens_lens[:, None])
        bos_tokens[~pad_mask] = self.tokenizer.pad_token_id

        # Forward encoder + decoder
        enc_out, logits, _ = self.modules.whisper(wavs, bos_tokens)
        log_probs = self.hparams.log_softmax(logits)

        hyps = None
        if stage == sb.Stage.VALID:
            hyps, _, _, _ = self.hparams.valid_search(enc_out.detach(), wav_lens)
        elif stage == sb.Stage.TEST:
            hyps, _, _, _ = self.hparams.test_search(enc_out.detach(), wav_lens)

        return log_probs, hyps, wav_lens

    def compute_objectives(self, predictions, batch, stage):
        """Computes the loss NLL given predictions and targets."""

        (log_probs, hyps, wav_lens) = predictions
        batch = batch.to(self.device)
        ids = batch.id
        tokens_eos, tokens_eos_lens = batch.tokens_eos

        # Augment Labels
        # if stage == sb.Stage.TRAIN and hasattr(self.hparams, "wav_augment"):
        #     tokens_eos = self.hparams.wav_augment.replicate_labels(tokens_eos)
        #     tokens_eos_lens = self.hparams.wav_augment.replicate_labels(
        #         tokens_eos_lens
        #     )

        loss = self.hparams.nll_loss(log_probs, tokens_eos, length=tokens_eos_lens)

        if stage != sb.Stage.TRAIN:
            tokens, tokens_lens = batch.tokens

            # Decode token terms to words
            predicted_words = [self.tokenizer.decode(t, skip_special_tokens=True).strip() for t in hyps]

            # Convert indices to words
            target_words = undo_padding(tokens, tokens_lens)
            target_words = self.tokenizer.batch_decode(target_words, skip_special_tokens=True)

            if hasattr(self.hparams, "normalized_transcripts"):
                predicted_words = [self.tokenizer.normalize(text).split(" ") for text in predicted_words]
                target_words = [self.tokenizer.normalize(text).split(" ") for text in target_words]
            else:
                predicted_words = [text.split(" ") for text in predicted_words]
                target_words = [text.split(" ") for text in target_words]

            self.wer_metric.append(ids, predicted_words, target_words)
            self.cer_metric.append(ids, predicted_words, target_words)

        return loss

    def on_stage_start(self, stage, epoch):
        """Gets called at the beginning of each epoch"""
        if stage != sb.Stage.TRAIN:
            self.cer_metric = self.hparams.cer_computer()
            self.wer_metric = self.hparams.error_rate_computer()

    def on_stage_end(self, stage, stage_loss, epoch):
        """Gets called at the end of an epoch."""
        # Compute/store important stats
        stage_stats = {"loss": stage_loss}
        if stage == sb.Stage.TRAIN:
            self.train_stats = stage_stats
        else:
            stage_stats["CER"] = self.cer_metric.summarize("error_rate")
            stage_stats["WER"] = self.wer_metric.summarize("error_rate")

        # Perform end-of-iteration things, like annealing, logging, etc.
        if stage == sb.Stage.VALID:
            lr = self.hparams.lr_annealing_whisper.current_lr
            self.hparams.train_logger.log_stats(
                stats_meta={"epoch": epoch, "lr": lr},
                train_stats=self.train_stats,
                valid_stats=stage_stats,
            )
            self.checkpointer.save_and_keep_only(
                meta={"WER": stage_stats["WER"]},
                min_keys=["WER"],
            )
        elif stage == sb.Stage.TEST:
            self.hparams.train_logger.log_stats(
                stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
                test_stats=stage_stats,
            )
            if if_main_process():
                with open(self.hparams.test_wer_file, "w") as w:
                    self.wer_metric.write_stats(w)

    def run_inference(
            self,
            dataset, # Must be obtained from the dataio_function
            min_key, # We load the model with the lowest error rate
            loader_kwargs, # opts for the dataloading
        ):

        # If dataset isn't a Dataloader, we create it. 
        if not isinstance(dataset, DataLoader):
            loader_kwargs["ckpt_prefix"] = None
            dataset = self.make_dataloader(
                dataset, sb.Stage.TEST, **loader_kwargs
            )

        self.checkpointer.recover_if_possible(min_key=min_key)
        self.modules.eval() # We set the model to eval mode (remove dropout etc)

        with torch.no_grad():
            true_labels = []
            pred_labels = []
            #for batch in tqdm(dataset, dynamic_ncols=True):

            for batch in dataset:
                # Make sure that your compute_forward returns the predictions !!!
                # In the case of the template, when stage = TEST, a beam search is applied 
                # in compute_forward(). 

                tokens, tokens_lens = batch.tokens
                log_probs, predictions, wav_lens = self.compute_forward(batch, stage=sb.Stage.TEST) 
                pred_batch = []
                predicted_words = []

                # Decode token terms to words
                predicted_words = [tokenizer.decode(token, skip_special_tokens=True).strip() for token in predictions]
                # predicted_words = [tokenizer.decode(pred) for pred in predictions]
                # labels = [tokenizer.decode(trn) for trn in batch.tokens_list]

                # Convert indices to words
                target_words = undo_padding(tokens, tokens_lens)
                target_words = tokenizer.batch_decode(target_words, skip_special_tokens=True)

                # if hasattr(self.hparams, "normalized_transcripts"):
                #     predicted_words = [tokenizer.normalize(text) for text in predicted_words]
                #     target_words = [tokenizer.normalize(text) for text in target_words]

                for sent in predicted_words:
                    sent = filter_repetitions([sent], 3)
                    sent = " ".join(sent)
                    pred_batch.append(sent)

                # if len(pred_batch[0].split()) > 50:
                    # continue
                pred_labels.append(pred_batch[0])
                true_labels.append(target_words[0])

                # print("True: ", batch.transcript[0])
                # print("Pred: ", pred_batch[0])
                # with open("predictions/predictions_arhiv.txt", "a") as f:
                    # f.write("True: " + batch.transcript[0] + "\n")
                    # f.write("Pred: " + pred_batch[0] + "\n\n")

                if self.hparams.restore_capitalization:
                    inputs = recap_tokenizer(["restore capitalization and punctuation: " + pred_batch[0]], return_tensors="pt", padding=True).to(self.device)
                    outputs = recap_model.generate(**inputs, max_length=1024, num_beams=5, early_stopping=True).squeeze(0)
                    pred_batch[0] = recap_tokenizer.decode(outputs, skip_special_tokens=True)
                

                # print("True: ", target_words[0])
                # print("Pred: ", pred_batch[0])
                # print('WER: ', wer(target_words, pred_batch[0]) * 100)
                # print("\n")

                # with open("predictions/predictions_eaz.txt", "a") as f:
                #     f.write(str(batch.id[0]) + "\t" + pred_batch[0] + "\n")

        print('WER: ', wer(true_labels, pred_labels) * 100)
        print('CER: ', cer(true_labels, pred_labels) * 100)


def filter_repetitions(seq, max_repetition_length):
    seq = list(seq)
    output = []
    max_n = len(seq) // 2
    for n in range(max_n, 0, -1):
        max_repetitions = max(max_repetition_length // n, 1)
        # Don't need to iterate over impossible n values:
        # len(seq) can change a lot during iteration
        if (len(seq) <= n*2) or (len(seq) <= max_repetition_length):
            continue
        iterator = enumerate(seq)
        # Fill first buffers:
        buffers = [[next(iterator)[1]] for _ in range(n)]
        for seq_index, token in iterator:
            current_buffer = seq_index % n
            if token != buffers[current_buffer][-1]:
                # No repeat, we can flush some tokens
                buf_len = sum(map(len, buffers))
                flush_start = (current_buffer-buf_len) % n
                # Keep n-1 tokens, but possibly mark some for removal
                for flush_index in range(buf_len - buf_len%n):
                    if (buf_len - flush_index) > n-1:
                        to_flush = buffers[(flush_index + flush_start) % n].pop(0)
                    else:
                        to_flush = None
                    # Here, repetitions get removed:
                    if (flush_index // n < max_repetitions) and to_flush is not None:
                        output.append(to_flush)
                    elif (flush_index // n >= max_repetitions) and to_flush is None:
                        output.append(to_flush)
            buffers[current_buffer].append(token)
        # At the end, final flush
        current_buffer += 1
        buf_len = sum(map(len, buffers))
        flush_start = (current_buffer-buf_len) % n
        for flush_index in range(buf_len):
            to_flush = buffers[(flush_index + flush_start) % n].pop(0)
            # Here, repetitions just get removed:
            if flush_index // n < max_repetitions:
                output.append(to_flush)
        seq = []
        to_delete = 0
        for token in output:
            if token is None:
                to_delete += 1
            elif to_delete > 0:
                to_delete -= 1
            else:
                seq.append(token)
        output = []
    return seq


def dataio_prepare(hparams, tokenizer):
    """This function prepares the datasets to be used in the brain class.
    It also defines the data processing pipeline through user-defined functions.
    """
    data_folder = hparams["data_folder"]

    train_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "train_dev.json"), replacements={"data_root": data_folder})
    train_data = train_data.filtered_sorted(sort_key="duration")
    hparams["train_dataloader_opts"]["shuffle"] = False

    valid_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "test_all.json"), replacements={"data_root": data_folder})
    valid_data = valid_data.filtered_sorted(sort_key="duration")

    test_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "test_eaz.json"), replacements={"data_root": data_folder})

    datasets = [train_data, valid_data, test_data]

    # 2. Define audio pipeline:
    @sb.utils.data_pipeline.takes("data_path")
    @sb.utils.data_pipeline.provides("sig")
    def audio_pipeline(data_path):
        info = torchaudio.info(data_path)
        sig = sb.dataio.dataio.read_audio(data_path)
        if info.sample_rate != hparams["sample_rate"]:
            sig = torchaudio.transforms.Resample(info.sample_rate, hparams["sample_rate"])(sig)
        return sig

    sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)

    # 3. Define text pipeline:
    @sb.utils.data_pipeline.takes("transcript")
    @sb.utils.data_pipeline.provides("transcript", "tokens_list", "tokens_bos", "tokens_eos", "tokens")
    def text_pipeline(transcript):
        # if hasattr(hparams, "normalized_transcripts"):
        #     transcript = tokenizer.normalize(transcript)
        yield transcript
        tokens_list = tokenizer.encode(transcript, add_special_tokens=False)
        yield tokens_list
        tokens_list = tokenizer.build_inputs_with_special_tokens(tokens_list)
        tokens_bos = torch.LongTensor(tokens_list[:-1])
        yield tokens_bos
        tokens_eos = torch.LongTensor(tokens_list[1:])
        yield tokens_eos
        tokens = torch.LongTensor(tokens_list)
        yield tokens

    sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)

    # 4. Set output:
    sb.dataio.dataset.set_output_keys(
        datasets,
        ["id", "sig", "tokens_list", "tokens_bos", "tokens_eos", "tokens"],
    )

    return train_data, valid_data, test_data


if __name__ == "__main__":
    # CLI:
    hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])

    # create ddp_group with the right communication protocol
    sb.utils.distributed.ddp_init_group(run_opts)

    with open(hparams_file) as fin:
        hparams = load_hyperpyyaml(fin, overrides)

    # Create experiment directory
    sb.create_experiment_directory(
        experiment_directory=hparams["output_folder"],
        hyperparams_to_save=hparams_file,
        overrides=overrides,
    )

    # Defining tokenizer and loading it
    tokenizer = hparams["whisper"].tokenizer

    # here we create the datasets objects as well as tokenization and encoding
    train_data, valid_data, test_data = dataio_prepare(hparams, tokenizer)

    run_on_main(hparams["pretrainer"].collect_files)
    hparams["pretrainer"].load_collected()

    # Trainer initialization
    asr_brain = ASR(
        modules=hparams["modules"],
        hparams=hparams,
        run_opts=run_opts,
        checkpointer=hparams["checkpointer"],
        opt_class=hparams["whisper_opt_class"],
    )

    # We load the pretrained whisper model
    if "pretrainer" in hparams.keys():
        hparams["pretrainer"].collect_files()
        hparams["pretrainer"].load_collected(asr_brain.device)

    # We dynamically add the tokenizer to our brain class.
    # NB: This tokenizer corresponds to the one used for Whisper.
    asr_brain.tokenizer = tokenizer


    # Training/validation loop
    if hparams["skip_training"] == False:
        print("Training...")
        # Training
        asr_brain.fit(
            asr_brain.hparams.epoch_counter,
            train_data,
            valid_data,
            train_loader_kwargs=hparams["train_dataloader_opts"],
            valid_loader_kwargs=hparams["valid_dataloader_opts"],
        )
    
    else:
        # evaluate
        print("Evaluating")
        asr_brain.run_inference(test_data, "WER", hparams["test_dataloader_opts"])