Porjaz commited on
Commit
e298aea
·
verified ·
1 Parent(s): 402022e

Update custom_interface.py

Browse files
Files changed (1) hide show
  1. custom_interface.py +58 -0
custom_interface.py CHANGED
@@ -22,8 +22,66 @@ class ASR(Pretrained):
22
  predictions = self.hparams.test_search(encoded_outputs, self.wav_lens)[0]
23
  predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions]
24
 
 
 
 
 
 
 
25
  return predicted_words
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
  def classify_file(self, path):
29
  # waveform = self.load_audio(path)
 
22
  predictions = self.hparams.test_search(encoded_outputs, self.wav_lens)[0]
23
  predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions]
24
 
25
+ prediction = []
26
+ for sent in predicted_words:
27
+ sent = filter_repetitions(sent, 3)
28
+ sent = " ".join(sent)
29
+ prediction.append(sent)
30
+ predicted_words = prediction[0]
31
  return predicted_words
32
 
33
+ def filter_repetitions(self, seq, max_repetition_length):
34
+ seq = list(seq)
35
+ output = []
36
+ max_n = len(seq) // 2
37
+ for n in range(max_n, 0, -1):
38
+ max_repetitions = max(max_repetition_length // n, 1)
39
+ # Don't need to iterate over impossible n values:
40
+ # len(seq) can change a lot during iteration
41
+ if (len(seq) <= n*2) or (len(seq) <= max_repetition_length):
42
+ continue
43
+ iterator = enumerate(seq)
44
+ # Fill first buffers:
45
+ buffers = [[next(iterator)[1]] for _ in range(n)]
46
+ for seq_index, token in iterator:
47
+ current_buffer = seq_index % n
48
+ if token != buffers[current_buffer][-1]:
49
+ # No repeat, we can flush some tokens
50
+ buf_len = sum(map(len, buffers))
51
+ flush_start = (current_buffer-buf_len) % n
52
+ # Keep n-1 tokens, but possibly mark some for removal
53
+ for flush_index in range(buf_len - buf_len%n):
54
+ if (buf_len - flush_index) > n-1:
55
+ to_flush = buffers[(flush_index + flush_start) % n].pop(0)
56
+ else:
57
+ to_flush = None
58
+ # Here, repetitions get removed:
59
+ if (flush_index // n < max_repetitions) and to_flush is not None:
60
+ output.append(to_flush)
61
+ elif (flush_index // n >= max_repetitions) and to_flush is None:
62
+ output.append(to_flush)
63
+ buffers[current_buffer].append(token)
64
+ # At the end, final flush
65
+ current_buffer += 1
66
+ buf_len = sum(map(len, buffers))
67
+ flush_start = (current_buffer-buf_len) % n
68
+ for flush_index in range(buf_len):
69
+ to_flush = buffers[(flush_index + flush_start) % n].pop(0)
70
+ # Here, repetitions just get removed:
71
+ if flush_index // n < max_repetitions:
72
+ output.append(to_flush)
73
+ seq = []
74
+ to_delete = 0
75
+ for token in output:
76
+ if token is None:
77
+ to_delete += 1
78
+ elif to_delete > 0:
79
+ to_delete -= 1
80
+ else:
81
+ seq.append(token)
82
+ output = []
83
+ return seq
84
+
85
 
86
  def classify_file(self, path):
87
  # waveform = self.load_audio(path)