Porjaz commited on
Commit
be9d6d0
·
verified ·
1 Parent(s): 8ae8311

Create train.py

Browse files
Files changed (1) hide show
  1. train.py +352 -0
train.py ADDED
@@ -0,0 +1,352 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env/python3
2
+
3
+ import sys
4
+ import os
5
+
6
+ import torch
7
+ from torch.utils.data import DataLoader
8
+ import torchaudio
9
+ from hyperpyyaml import load_hyperpyyaml
10
+
11
+ import speechbrain as sb
12
+ from speechbrain.utils.data_utils import undo_padding
13
+ from speechbrain.utils.distributed import if_main_process, run_on_main
14
+ import logging
15
+ from transformers import AutoTokenizer
16
+
17
+ from jiwer import wer, cer
18
+
19
+ logger = logging.getLogger(__name__)
20
+
21
+
22
+ # Define training procedure
23
+ class ASR(sb.Brain):
24
+ def compute_forward(self, batch, stage):
25
+ """Forward computations from the waveform batches to the output probabilities."""
26
+ batch = batch.to(self.device)
27
+ wavs, wav_lens = batch.sig
28
+ bos_tokens, bos_tokens_lens = batch.tokens_bos
29
+
30
+ if stage == sb.Stage.TRAIN:
31
+ wavs, self.wav_lens = self.hparams.wav_augment(wavs, wav_lens)
32
+
33
+ # We compute the padding mask and replace the values with the pad_token_id
34
+ # that the Whisper decoder expect to see.
35
+ abs_tokens_lens = (bos_tokens_lens * bos_tokens.shape[1]).long()
36
+ pad_mask = (torch.arange(abs_tokens_lens.max(), device=self.device)[None, :] < abs_tokens_lens[:, None])
37
+ bos_tokens[~pad_mask] = self.tokenizer.pad_token_id
38
+
39
+ # Forward encoder + decoder
40
+ enc_out, logits, _ = self.modules.whisper(wavs, bos_tokens)
41
+ log_probs = self.hparams.log_softmax(logits)
42
+
43
+ hyps = None
44
+ if stage == sb.Stage.VALID:
45
+ hyps, _, _, _ = self.hparams.valid_search(enc_out.detach(), wav_lens)
46
+ elif stage == sb.Stage.TEST:
47
+ hyps, _, _, _ = self.hparams.test_search(enc_out.detach(), wav_lens)
48
+
49
+ return log_probs, hyps, wav_lens
50
+
51
+ def compute_objectives(self, predictions, batch, stage):
52
+ """Computes the loss NLL given predictions and targets."""
53
+
54
+ (log_probs, hyps, wav_lens) = predictions
55
+ batch = batch.to(self.device)
56
+ ids = batch.id
57
+ tokens_eos, tokens_eos_lens = batch.tokens_eos
58
+
59
+ # Augment Labels
60
+ # if stage == sb.Stage.TRAIN and hasattr(self.hparams, "wav_augment"):
61
+ # tokens_eos = self.hparams.wav_augment.replicate_labels(tokens_eos)
62
+ # tokens_eos_lens = self.hparams.wav_augment.replicate_labels(
63
+ # tokens_eos_lens
64
+ # )
65
+
66
+ loss = self.hparams.nll_loss(log_probs, tokens_eos, length=tokens_eos_lens)
67
+
68
+ if stage != sb.Stage.TRAIN:
69
+ tokens, tokens_lens = batch.tokens
70
+
71
+ # Decode token terms to words
72
+ predicted_words = [self.tokenizer.decode(t, skip_special_tokens=True).strip() for t in hyps]
73
+
74
+ # Convert indices to words
75
+ target_words = undo_padding(tokens, tokens_lens)
76
+ target_words = self.tokenizer.batch_decode(target_words, skip_special_tokens=True)
77
+
78
+ if hasattr(self.hparams, "normalized_transcripts"):
79
+ predicted_words = [self.tokenizer.normalize(text).split(" ") for text in predicted_words]
80
+ target_words = [self.tokenizer.normalize(text).split(" ") for text in target_words]
81
+ else:
82
+ predicted_words = [text.split(" ") for text in predicted_words]
83
+ target_words = [text.split(" ") for text in target_words]
84
+
85
+ self.wer_metric.append(ids, predicted_words, target_words)
86
+ self.cer_metric.append(ids, predicted_words, target_words)
87
+
88
+ return loss
89
+
90
+ def on_stage_start(self, stage, epoch):
91
+ """Gets called at the beginning of each epoch"""
92
+ if stage != sb.Stage.TRAIN:
93
+ self.cer_metric = self.hparams.cer_computer()
94
+ self.wer_metric = self.hparams.error_rate_computer()
95
+
96
+ def on_stage_end(self, stage, stage_loss, epoch):
97
+ """Gets called at the end of an epoch."""
98
+ # Compute/store important stats
99
+ stage_stats = {"loss": stage_loss}
100
+ if stage == sb.Stage.TRAIN:
101
+ self.train_stats = stage_stats
102
+ else:
103
+ stage_stats["CER"] = self.cer_metric.summarize("error_rate")
104
+ stage_stats["WER"] = self.wer_metric.summarize("error_rate")
105
+
106
+ # Perform end-of-iteration things, like annealing, logging, etc.
107
+ if stage == sb.Stage.VALID:
108
+ lr = self.hparams.lr_annealing_whisper.current_lr
109
+ self.hparams.train_logger.log_stats(
110
+ stats_meta={"epoch": epoch, "lr": lr},
111
+ train_stats=self.train_stats,
112
+ valid_stats=stage_stats,
113
+ )
114
+ self.checkpointer.save_and_keep_only(
115
+ meta={"WER": stage_stats["WER"]},
116
+ min_keys=["WER"],
117
+ )
118
+ elif stage == sb.Stage.TEST:
119
+ self.hparams.train_logger.log_stats(
120
+ stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
121
+ test_stats=stage_stats,
122
+ )
123
+ if if_main_process():
124
+ with open(self.hparams.test_wer_file, "w") as w:
125
+ self.wer_metric.write_stats(w)
126
+
127
+ def run_inference(
128
+ self,
129
+ dataset, # Must be obtained from the dataio_function
130
+ min_key, # We load the model with the lowest error rate
131
+ loader_kwargs, # opts for the dataloading
132
+ ):
133
+
134
+ # If dataset isn't a Dataloader, we create it.
135
+ if not isinstance(dataset, DataLoader):
136
+ loader_kwargs["ckpt_prefix"] = None
137
+ dataset = self.make_dataloader(
138
+ dataset, sb.Stage.TEST, **loader_kwargs
139
+ )
140
+
141
+ self.checkpointer.recover_if_possible(min_key=min_key)
142
+ self.modules.eval() # We set the model to eval mode (remove dropout etc)
143
+
144
+ with torch.no_grad():
145
+ true_labels = []
146
+ pred_labels = []
147
+ #for batch in tqdm(dataset, dynamic_ncols=True):
148
+
149
+ for batch in dataset:
150
+ # Make sure that your compute_forward returns the predictions !!!
151
+ # In the case of the template, when stage = TEST, a beam search is applied
152
+ # in compute_forward().
153
+
154
+ tokens, tokens_lens = batch.tokens
155
+ log_probs, predictions, wav_lens = self.compute_forward(batch, stage=sb.Stage.TEST)
156
+ pred_batch = []
157
+ predicted_words = []
158
+
159
+ # Decode token terms to words
160
+ predicted_words = [tokenizer.decode(token, skip_special_tokens=True).strip() for token in predictions]
161
+ # predicted_words = [tokenizer.decode(pred) for pred in predictions]
162
+ # labels = [tokenizer.decode(trn) for trn in batch.tokens_list]
163
+
164
+ # Convert indices to words
165
+ target_words = undo_padding(tokens, tokens_lens)
166
+ target_words = tokenizer.batch_decode(target_words, skip_special_tokens=True)
167
+
168
+ for sent in predicted_words:
169
+ sent = filter_repetitions([sent], 3)
170
+ sent = " ".join(sent)
171
+ pred_batch.append(sent)
172
+
173
+ # if len(pred_batch[0].split()) > 50:
174
+ # continue
175
+ pred_labels.append(pred_batch[0])
176
+ true_labels.append(target_words[0])
177
+
178
+ print('WER: ', wer(true_labels, pred_labels) * 100)
179
+ print('CER: ', cer(true_labels, pred_labels) * 100)
180
+
181
+
182
+ def filter_repetitions(seq, max_repetition_length):
183
+ seq = list(seq)
184
+ output = []
185
+ max_n = len(seq) // 2
186
+ for n in range(max_n, 0, -1):
187
+ max_repetitions = max(max_repetition_length // n, 1)
188
+ # Don't need to iterate over impossible n values:
189
+ # len(seq) can change a lot during iteration
190
+ if (len(seq) <= n*2) or (len(seq) <= max_repetition_length):
191
+ continue
192
+ iterator = enumerate(seq)
193
+ # Fill first buffers:
194
+ buffers = [[next(iterator)[1]] for _ in range(n)]
195
+ for seq_index, token in iterator:
196
+ current_buffer = seq_index % n
197
+ if token != buffers[current_buffer][-1]:
198
+ # No repeat, we can flush some tokens
199
+ buf_len = sum(map(len, buffers))
200
+ flush_start = (current_buffer-buf_len) % n
201
+ # Keep n-1 tokens, but possibly mark some for removal
202
+ for flush_index in range(buf_len - buf_len%n):
203
+ if (buf_len - flush_index) > n-1:
204
+ to_flush = buffers[(flush_index + flush_start) % n].pop(0)
205
+ else:
206
+ to_flush = None
207
+ # Here, repetitions get removed:
208
+ if (flush_index // n < max_repetitions) and to_flush is not None:
209
+ output.append(to_flush)
210
+ elif (flush_index // n >= max_repetitions) and to_flush is None:
211
+ output.append(to_flush)
212
+ buffers[current_buffer].append(token)
213
+ # At the end, final flush
214
+ current_buffer += 1
215
+ buf_len = sum(map(len, buffers))
216
+ flush_start = (current_buffer-buf_len) % n
217
+ for flush_index in range(buf_len):
218
+ to_flush = buffers[(flush_index + flush_start) % n].pop(0)
219
+ # Here, repetitions just get removed:
220
+ if flush_index // n < max_repetitions:
221
+ output.append(to_flush)
222
+ seq = []
223
+ to_delete = 0
224
+ for token in output:
225
+ if token is None:
226
+ to_delete += 1
227
+ elif to_delete > 0:
228
+ to_delete -= 1
229
+ else:
230
+ seq.append(token)
231
+ output = []
232
+ return seq
233
+
234
+
235
+ def dataio_prepare(hparams, tokenizer):
236
+ """This function prepares the datasets to be used in the brain class.
237
+ It also defines the data processing pipeline through user-defined functions.
238
+ """
239
+ data_folder = hparams["data_folder"]
240
+
241
+ train_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "train_dev.json"), replacements={"data_root": data_folder})
242
+ train_data = train_data.filtered_sorted(sort_key="duration")
243
+ hparams["train_dataloader_opts"]["shuffle"] = False
244
+
245
+ valid_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "test_all.json"), replacements={"data_root": data_folder})
246
+ valid_data = valid_data.filtered_sorted(sort_key="duration")
247
+
248
+ test_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "test_eaz.json"), replacements={"data_root": data_folder})
249
+
250
+ datasets = [train_data, valid_data, test_data]
251
+
252
+ # 2. Define audio pipeline:
253
+ @sb.utils.data_pipeline.takes("data_path")
254
+ @sb.utils.data_pipeline.provides("sig")
255
+ def audio_pipeline(data_path):
256
+ info = torchaudio.info(data_path)
257
+ sig = sb.dataio.dataio.read_audio(data_path)
258
+ if info.sample_rate != hparams["sample_rate"]:
259
+ sig = torchaudio.transforms.Resample(info.sample_rate, hparams["sample_rate"])(sig)
260
+ return sig
261
+
262
+ sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
263
+
264
+ # 3. Define text pipeline:
265
+ @sb.utils.data_pipeline.takes("transcript")
266
+ @sb.utils.data_pipeline.provides("transcript", "tokens_list", "tokens_bos", "tokens_eos", "tokens")
267
+ def text_pipeline(transcript):
268
+ # if hasattr(hparams, "normalized_transcripts"):
269
+ # transcript = tokenizer.normalize(transcript)
270
+ yield transcript
271
+ tokens_list = tokenizer.encode(transcript, add_special_tokens=False)
272
+ yield tokens_list
273
+ tokens_list = tokenizer.build_inputs_with_special_tokens(tokens_list)
274
+ tokens_bos = torch.LongTensor(tokens_list[:-1])
275
+ yield tokens_bos
276
+ tokens_eos = torch.LongTensor(tokens_list[1:])
277
+ yield tokens_eos
278
+ tokens = torch.LongTensor(tokens_list)
279
+ yield tokens
280
+
281
+ sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
282
+
283
+ # 4. Set output:
284
+ sb.dataio.dataset.set_output_keys(
285
+ datasets,
286
+ ["id", "sig", "tokens_list", "tokens_bos", "tokens_eos", "tokens"],
287
+ )
288
+
289
+ return train_data, valid_data, test_data
290
+
291
+
292
+ if __name__ == "__main__":
293
+ # CLI:
294
+ hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
295
+
296
+ # create ddp_group with the right communication protocol
297
+ sb.utils.distributed.ddp_init_group(run_opts)
298
+
299
+ with open(hparams_file) as fin:
300
+ hparams = load_hyperpyyaml(fin, overrides)
301
+
302
+ # Create experiment directory
303
+ sb.create_experiment_directory(
304
+ experiment_directory=hparams["output_folder"],
305
+ hyperparams_to_save=hparams_file,
306
+ overrides=overrides,
307
+ )
308
+
309
+ # Defining tokenizer and loading it
310
+ tokenizer = hparams["whisper"].tokenizer
311
+
312
+ # here we create the datasets objects as well as tokenization and encoding
313
+ train_data, valid_data, test_data = dataio_prepare(hparams, tokenizer)
314
+
315
+ run_on_main(hparams["pretrainer"].collect_files)
316
+ hparams["pretrainer"].load_collected()
317
+
318
+ # Trainer initialization
319
+ asr_brain = ASR(
320
+ modules=hparams["modules"],
321
+ hparams=hparams,
322
+ run_opts=run_opts,
323
+ checkpointer=hparams["checkpointer"],
324
+ opt_class=hparams["whisper_opt_class"],
325
+ )
326
+
327
+ # We load the pretrained whisper model
328
+ if "pretrainer" in hparams.keys():
329
+ hparams["pretrainer"].collect_files()
330
+ hparams["pretrainer"].load_collected(asr_brain.device)
331
+
332
+ # We dynamically add the tokenizer to our brain class.
333
+ # NB: This tokenizer corresponds to the one used for Whisper.
334
+ asr_brain.tokenizer = tokenizer
335
+
336
+
337
+ # Training/validation loop
338
+ if hparams["skip_training"] == False:
339
+ print("Training...")
340
+ # Training
341
+ asr_brain.fit(
342
+ asr_brain.hparams.epoch_counter,
343
+ train_data,
344
+ valid_data,
345
+ train_loader_kwargs=hparams["train_dataloader_opts"],
346
+ valid_loader_kwargs=hparams["valid_dataloader_opts"],
347
+ )
348
+
349
+ else:
350
+ # evaluate
351
+ print("Evaluating")
352
+ asr_brain.run_inference(test_data, "WER", hparams["test_dataloader_opts"])