Update custom_interface_app.py
Browse files- custom_interface_app.py +51 -52
custom_interface_app.py
CHANGED
@@ -2,6 +2,7 @@ import torch
|
|
2 |
from speechbrain.inference.interfaces import Pretrained
|
3 |
import librosa
|
4 |
import numpy as np
|
|
|
5 |
|
6 |
|
7 |
class ASR(Pretrained):
|
@@ -85,69 +86,66 @@ class ASR(Pretrained):
|
|
85 |
seq.append(token)
|
86 |
output = []
|
87 |
return seq
|
88 |
-
|
89 |
|
90 |
-
def increase_volume(self, waveform, threshold_db=-25):
|
91 |
-
# Measure loudness using RMS
|
92 |
-
loudness_vector = librosa.feature.rms(y=waveform)
|
93 |
-
average_loudness = np.mean(loudness_vector)
|
94 |
-
average_loudness_db = librosa.amplitude_to_db(average_loudness)
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
# Check if loudness is below threshold and apply gain if needed
|
99 |
-
if average_loudness_db < threshold_db:
|
100 |
-
# Calculate gain needed
|
101 |
-
gain_db = threshold_db - average_loudness_db
|
102 |
-
gain = librosa.db_to_amplitude(gain_db) # Convert dB to amplitude factor
|
103 |
-
|
104 |
-
# Apply gain to the audio signal
|
105 |
-
waveform = waveform * gain
|
106 |
-
loudness_vector = librosa.feature.rms(y=waveform)
|
107 |
-
average_loudness = np.mean(loudness_vector)
|
108 |
-
average_loudness_db = librosa.amplitude_to_db(average_loudness)
|
109 |
-
|
110 |
-
print(f"Average Loudness: {average_loudness_db} dB")
|
111 |
-
return waveform
|
112 |
-
|
113 |
-
|
114 |
-
def classify_file_w2v2(self, waveform, device):
|
115 |
# Get audio length in seconds
|
116 |
sr = 16000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
audio_length = len(waveform) / sr
|
|
|
118 |
|
119 |
-
if audio_length >=
|
120 |
print(f"Audio is too long ({audio_length:.2f} seconds), splitting into segments")
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
segments = []
|
126 |
-
|
127 |
-
|
128 |
-
max_duration = 30 * sr # Maximum segment duration in samples (20 seconds)
|
129 |
|
|
|
|
|
|
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
segments.append(
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
current_segment.append(segment_part)
|
142 |
-
current_length += len(segment_part)
|
143 |
|
144 |
-
#
|
145 |
-
|
146 |
-
segments.append(np.concatenate(current_segment))
|
147 |
|
148 |
# Process each segment
|
149 |
outputs = []
|
150 |
for i, segment in enumerate(segments):
|
|
|
|
|
|
|
|
|
151 |
print(f"Processing segment {i + 1}/{len(segments)}, length: {len(segment) / sr:.2f} seconds")
|
152 |
|
153 |
# import soundfile as sf
|
@@ -164,12 +162,13 @@ class ASR(Pretrained):
|
|
164 |
# outputs.append(result)
|
165 |
yield result
|
166 |
else:
|
167 |
-
waveform =
|
|
|
|
|
|
|
168 |
waveform = waveform.to(device)
|
169 |
-
# Fake a batch:
|
170 |
-
batch = waveform.unsqueeze(0)
|
171 |
rel_length = torch.tensor([1.0]).to(device)
|
172 |
-
outputs = " ".join(self.encode_batch_w2v2(device,
|
173 |
yield outputs
|
174 |
|
175 |
|
|
|
2 |
from speechbrain.inference.interfaces import Pretrained
|
3 |
import librosa
|
4 |
import numpy as np
|
5 |
+
import torchaudio
|
6 |
|
7 |
|
8 |
class ASR(Pretrained):
|
|
|
86 |
seq.append(token)
|
87 |
output = []
|
88 |
return seq
|
|
|
89 |
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
def classify_file_w2v2(self, file, vad_model, device):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
# Get audio length in seconds
|
93 |
sr = 16000
|
94 |
+
max_segment_length = 30
|
95 |
+
|
96 |
+
# waveform, sr = librosa.load(file, sr=sr)
|
97 |
+
waveform, file_sr = torchaudio.load(file)
|
98 |
+
# resample if not 16kHz
|
99 |
+
if file_sr != sr:
|
100 |
+
waveform = torchaudio.transforms.Resample(file_sr, sr)(waveform)
|
101 |
+
|
102 |
+
waveform = waveform.squeeze()
|
103 |
audio_length = len(waveform) / sr
|
104 |
+
print(f"Audio length: {audio_length:.2f} seconds")
|
105 |
|
106 |
+
if audio_length >= max_segment_length:
|
107 |
print(f"Audio is too long ({audio_length:.2f} seconds), splitting into segments")
|
108 |
+
|
109 |
+
# save waveform temporarily
|
110 |
+
torchaudio.save("temp.wav", waveform.unsqueeze(0), sr)
|
111 |
+
# get boundaries based on VAD
|
112 |
+
boundaries = vad_model.get_speech_segments("temp.wav",
|
113 |
+
large_chunk_size=30,
|
114 |
+
small_chunk_size=10,
|
115 |
+
apply_energy_VAD=True,
|
116 |
+
double_check=True)
|
117 |
+
# remove temp file
|
118 |
+
os.remove("temp.wav")
|
119 |
+
|
120 |
+
# Merge the segments to max max_segment_length
|
121 |
segments = []
|
122 |
+
current_start = boundaries[0][0].item()
|
123 |
+
current_end = boundaries[0][1].item()
|
|
|
124 |
|
125 |
+
for i in range(1, len(boundaries)):
|
126 |
+
next_start = boundaries[i][0].item()
|
127 |
+
next_end = boundaries[i][1].item()
|
128 |
|
129 |
+
# Check if the current segment can merge with the next segment
|
130 |
+
if (current_end - current_start) + (next_end - next_start) <= max_segment_length:
|
131 |
+
# Extend the current segment
|
132 |
+
current_end = next_end
|
133 |
+
else:
|
134 |
+
# Add the current segment to the result and start a new one
|
135 |
+
segments.append([current_start, current_end])
|
136 |
+
current_start = next_start
|
137 |
+
current_end = next_end
|
|
|
|
|
|
|
138 |
|
139 |
+
# Add the last segment
|
140 |
+
segments.append([current_start, current_end])
|
|
|
141 |
|
142 |
# Process each segment
|
143 |
outputs = []
|
144 |
for i, segment in enumerate(segments):
|
145 |
+
start, end = segment
|
146 |
+
start = int(start * sr)
|
147 |
+
end = int(end * sr)
|
148 |
+
segment = waveform[start:end]
|
149 |
print(f"Processing segment {i + 1}/{len(segments)}, length: {len(segment) / sr:.2f} seconds")
|
150 |
|
151 |
# import soundfile as sf
|
|
|
162 |
# outputs.append(result)
|
163 |
yield result
|
164 |
else:
|
165 |
+
waveform, file_sr = torchaudio.load(file)
|
166 |
+
# resample if not 16kHz
|
167 |
+
if file_sr != sr:
|
168 |
+
waveform = torchaudio.transforms.Resample(file_sr, sr)(waveform)
|
169 |
waveform = waveform.to(device)
|
|
|
|
|
170 |
rel_length = torch.tensor([1.0]).to(device)
|
171 |
+
outputs = " ".join(self.encode_batch_w2v2(device, waveform, rel_length)[0])
|
172 |
yield outputs
|
173 |
|
174 |
|