Create train.py
Browse files
train.py
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env/python3
|
2 |
+
|
3 |
+
import logging
|
4 |
+
import sys
|
5 |
+
from pathlib import Path
|
6 |
+
import os
|
7 |
+
|
8 |
+
import librosa
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch.utils.data import DataLoader
|
12 |
+
from hyperpyyaml import load_hyperpyyaml
|
13 |
+
|
14 |
+
import speechbrain as sb
|
15 |
+
from speechbrain.utils.distributed import if_main_process, run_on_main
|
16 |
+
|
17 |
+
from jiwer import wer, cer
|
18 |
+
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
|
22 |
+
# Define training procedure
|
23 |
+
class ASR(sb.Brain):
|
24 |
+
def compute_forward(self, batch, stage):
|
25 |
+
"""Forward computations from the waveform batches to the output probabilities."""
|
26 |
+
batch = batch.to(self.device)
|
27 |
+
sig, self.sig_lens = batch.sig
|
28 |
+
tokens_bos, _ = batch.tokens_bos
|
29 |
+
sig, self.sig_lens = sig.to(self.device), self.sig_lens.to(self.device)
|
30 |
+
|
31 |
+
# Add waveform augmentation if specified.
|
32 |
+
if stage == sb.Stage.TRAIN:
|
33 |
+
sig, self.sig_lens = self.hparams.wav_augment(sig, self.sig_lens)
|
34 |
+
|
35 |
+
# Forward pass
|
36 |
+
encoded_outputs = self.modules.encoder_w2v2(sig.detach())
|
37 |
+
embedded_tokens = self.modules.embedding(tokens_bos)
|
38 |
+
decoder_outputs, _ = self.modules.decoder(embedded_tokens, encoded_outputs, self.sig_lens)
|
39 |
+
|
40 |
+
# Output layer for seq2seq log-probabilities
|
41 |
+
logits = self.modules.seq_lin(decoder_outputs)
|
42 |
+
predictions = {"seq_logprobs": self.hparams.log_softmax(logits)}
|
43 |
+
|
44 |
+
if self.is_ctc_active(stage):
|
45 |
+
# Output layer for ctc log-probabilities
|
46 |
+
ctc_logits = self.modules.ctc_lin(encoded_outputs)
|
47 |
+
predictions["ctc_logprobs"] = self.hparams.log_softmax(ctc_logits)
|
48 |
+
elif stage == sb.Stage.VALID:
|
49 |
+
predictions["tokens"], _, _, _ = self.hparams.greedy_search(encoded_outputs, self.sig_lens)
|
50 |
+
elif stage == sb.Stage.TEST:
|
51 |
+
predictions["tokens"], _, _, _ = self.hparams.test_search(encoded_outputs, self.sig_lens)
|
52 |
+
|
53 |
+
return predictions
|
54 |
+
|
55 |
+
|
56 |
+
def is_ctc_active(self, stage):
|
57 |
+
"""Check if CTC is currently active.
|
58 |
+
|
59 |
+
Arguments
|
60 |
+
---------
|
61 |
+
stage : sb.Stage
|
62 |
+
Currently executing stage.
|
63 |
+
"""
|
64 |
+
if stage != sb.Stage.TRAIN:
|
65 |
+
return False
|
66 |
+
current_epoch = self.hparams.epoch_counter.current
|
67 |
+
return current_epoch <= self.hparams.number_of_ctc_epochs
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
def compute_objectives(self, predictions, batch, stage):
|
72 |
+
"""Computes the loss (CTC+NLL) given predictions and targets."""
|
73 |
+
ids = batch.id
|
74 |
+
tokens_eos, tokens_eos_lens = batch.tokens_eos
|
75 |
+
tokens, tokens_lens = batch.tokens
|
76 |
+
|
77 |
+
loss = self.hparams.nll_cost(log_probabilities=predictions["seq_logprobs"], targets=tokens_eos, length=tokens_eos_lens)
|
78 |
+
|
79 |
+
if self.is_ctc_active(stage):
|
80 |
+
# Load tokens without EOS as CTC targets
|
81 |
+
loss_ctc = self.hparams.ctc_cost(predictions["ctc_logprobs"], tokens, self.sig_lens, tokens_lens)
|
82 |
+
loss *= 1 - self.hparams.ctc_weight
|
83 |
+
loss += self.hparams.ctc_weight * loss_ctc
|
84 |
+
|
85 |
+
if stage != sb.Stage.TRAIN:
|
86 |
+
predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions["tokens"]]
|
87 |
+
target_words = [words.split(" ") for words in batch.transcript]
|
88 |
+
self.wer_metric.append(ids, predicted_words, target_words)
|
89 |
+
self.cer_metric.append(ids, predicted_words, target_words)
|
90 |
+
|
91 |
+
return loss
|
92 |
+
|
93 |
+
def on_stage_start(self, stage, epoch):
|
94 |
+
"""Gets called at the beginning of each epoch"""
|
95 |
+
if stage != sb.Stage.TRAIN:
|
96 |
+
self.cer_metric = self.hparams.cer_computer()
|
97 |
+
self.wer_metric = self.hparams.error_rate_computer()
|
98 |
+
|
99 |
+
def on_stage_end(self, stage, stage_loss, epoch):
|
100 |
+
"""Gets called at the end of a epoch."""
|
101 |
+
# Compute/store important stats
|
102 |
+
stage_stats = {"loss": stage_loss}
|
103 |
+
if stage == sb.Stage.TRAIN:
|
104 |
+
self.train_stats = stage_stats
|
105 |
+
else:
|
106 |
+
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
|
107 |
+
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
|
108 |
+
|
109 |
+
# Perform end-of-iteration things, like annealing, logging, etc.
|
110 |
+
if stage == sb.Stage.VALID:
|
111 |
+
old_lr, new_lr = self.hparams.lr_annealing(stage_stats["WER"])
|
112 |
+
sb.nnet.schedulers.update_learning_rate(self.optimizer, new_lr)
|
113 |
+
self.hparams.train_logger.log_stats(
|
114 |
+
stats_meta={"epoch": epoch, "lr": old_lr},
|
115 |
+
train_stats=self.train_stats,
|
116 |
+
valid_stats=stage_stats,
|
117 |
+
)
|
118 |
+
self.checkpointer.save_and_keep_only(
|
119 |
+
meta={"WER": stage_stats["WER"]},
|
120 |
+
min_keys=["WER"],
|
121 |
+
)
|
122 |
+
elif stage == sb.Stage.TEST:
|
123 |
+
self.hparams.train_logger.log_stats(
|
124 |
+
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
|
125 |
+
test_stats=stage_stats,
|
126 |
+
)
|
127 |
+
if if_main_process():
|
128 |
+
with open(self.hparams.test_wer_file, "w") as w:
|
129 |
+
self.wer_metric.write_stats(w)
|
130 |
+
|
131 |
+
def run_inference(
|
132 |
+
self,
|
133 |
+
dataset, # Must be obtained from the dataio_function
|
134 |
+
min_key, # We load the model with the lowest error rate
|
135 |
+
loader_kwargs, # opts for the dataloading
|
136 |
+
):
|
137 |
+
|
138 |
+
# If dataset isn't a Dataloader, we create it.
|
139 |
+
if not isinstance(dataset, DataLoader):
|
140 |
+
loader_kwargs["ckpt_prefix"] = None
|
141 |
+
dataset = self.make_dataloader(
|
142 |
+
dataset, sb.Stage.TEST, **loader_kwargs
|
143 |
+
)
|
144 |
+
|
145 |
+
self.checkpointer.recover_if_possible(min_key=min_key)
|
146 |
+
self.modules.eval() # We set the model to eval mode (remove dropout etc)
|
147 |
+
|
148 |
+
with torch.no_grad():
|
149 |
+
true_labels = []
|
150 |
+
pred_labels = []
|
151 |
+
for batch in dataset:
|
152 |
+
# Make sure that your compute_forward returns the predictions !!!
|
153 |
+
# In the case of the template, when stage = TEST, a beam search is applied
|
154 |
+
# in compute_forward().
|
155 |
+
predictions = self.compute_forward(batch, stage=sb.Stage.TEST)
|
156 |
+
|
157 |
+
pred_batch = []
|
158 |
+
predicted_words = []
|
159 |
+
|
160 |
+
predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions["tokens"]]
|
161 |
+
for sent in predicted_words:
|
162 |
+
# sent = " ".join(sent)
|
163 |
+
sent = filter_repetitions(sent, 3)
|
164 |
+
sent = " ".join(sent)
|
165 |
+
pred_batch.append(sent)
|
166 |
+
|
167 |
+
pred_labels.append(pred_batch[0])
|
168 |
+
true_labels.append(batch.transcript[0])
|
169 |
+
|
170 |
+
print('WER: ', wer(true_labels, pred_labels) * 100)
|
171 |
+
print('CER: ', cer(true_labels, pred_labels) * 100)
|
172 |
+
|
173 |
+
|
174 |
+
def filter_repetitions(seq, max_repetition_length):
|
175 |
+
seq = list(seq)
|
176 |
+
output = []
|
177 |
+
max_n = len(seq) // 2
|
178 |
+
for n in range(max_n, 0, -1):
|
179 |
+
max_repetitions = max(max_repetition_length // n, 1)
|
180 |
+
# Don't need to iterate over impossible n values:
|
181 |
+
# len(seq) can change a lot during iteration
|
182 |
+
if (len(seq) <= n*2) or (len(seq) <= max_repetition_length):
|
183 |
+
continue
|
184 |
+
iterator = enumerate(seq)
|
185 |
+
# Fill first buffers:
|
186 |
+
buffers = [[next(iterator)[1]] for _ in range(n)]
|
187 |
+
for seq_index, token in iterator:
|
188 |
+
current_buffer = seq_index % n
|
189 |
+
if token != buffers[current_buffer][-1]:
|
190 |
+
# No repeat, we can flush some tokens
|
191 |
+
buf_len = sum(map(len, buffers))
|
192 |
+
flush_start = (current_buffer-buf_len) % n
|
193 |
+
# Keep n-1 tokens, but possibly mark some for removal
|
194 |
+
for flush_index in range(buf_len - buf_len%n):
|
195 |
+
if (buf_len - flush_index) > n-1:
|
196 |
+
to_flush = buffers[(flush_index + flush_start) % n].pop(0)
|
197 |
+
else:
|
198 |
+
to_flush = None
|
199 |
+
# Here, repetitions get removed:
|
200 |
+
if (flush_index // n < max_repetitions) and to_flush is not None:
|
201 |
+
output.append(to_flush)
|
202 |
+
elif (flush_index // n >= max_repetitions) and to_flush is None:
|
203 |
+
output.append(to_flush)
|
204 |
+
buffers[current_buffer].append(token)
|
205 |
+
# At the end, final flush
|
206 |
+
current_buffer += 1
|
207 |
+
buf_len = sum(map(len, buffers))
|
208 |
+
flush_start = (current_buffer-buf_len) % n
|
209 |
+
for flush_index in range(buf_len):
|
210 |
+
to_flush = buffers[(flush_index + flush_start) % n].pop(0)
|
211 |
+
# Here, repetitions just get removed:
|
212 |
+
if flush_index // n < max_repetitions:
|
213 |
+
output.append(to_flush)
|
214 |
+
seq = []
|
215 |
+
to_delete = 0
|
216 |
+
for token in output:
|
217 |
+
if token is None:
|
218 |
+
to_delete += 1
|
219 |
+
elif to_delete > 0:
|
220 |
+
to_delete -= 1
|
221 |
+
else:
|
222 |
+
seq.append(token)
|
223 |
+
output = []
|
224 |
+
return seq
|
225 |
+
|
226 |
+
def dataio_prepare(hparams):
|
227 |
+
"""This function prepares the datasets to be used in the brain class.
|
228 |
+
It also defines the data processing pipeline through user-defined functions.
|
229 |
+
"""
|
230 |
+
data_folder = hparams["data_folder"]
|
231 |
+
|
232 |
+
train_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "train.json"), replacements={"data_root": data_folder})
|
233 |
+
train_data = train_data.filtered_sorted(sort_key="duration")
|
234 |
+
hparams["train_dataloader_opts"]["shuffle"] = False
|
235 |
+
|
236 |
+
valid_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "dev.json"), replacements={"data_root": data_folder})
|
237 |
+
valid_data = valid_data.filtered_sorted(sort_key="duration")
|
238 |
+
|
239 |
+
test_data = sb.dataio.dataset.DynamicItemDataset.from_json(json_path=os.path.join(hparams["data_folder"], "test.json"), replacements={"data_root": data_folder})
|
240 |
+
|
241 |
+
|
242 |
+
datasets = [train_data, valid_data, test_data]
|
243 |
+
|
244 |
+
# We get the tokenizer as we need it to encode the labels when creating
|
245 |
+
# mini-batches.
|
246 |
+
tokenizer = hparams["tokenizer"]
|
247 |
+
|
248 |
+
# 2. Define audio pipeline:
|
249 |
+
@sb.utils.data_pipeline.takes("data_path")
|
250 |
+
@sb.utils.data_pipeline.provides("sig")
|
251 |
+
def audio_pipeline(data_path):
|
252 |
+
sig, sr = librosa.load(data_path, sr=16000)
|
253 |
+
# sig = sb.dataio.dataio.read_audio(wav) # alternatively use the SpeechBrain data loading function
|
254 |
+
return sig
|
255 |
+
|
256 |
+
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
|
257 |
+
|
258 |
+
# 3. Define text pipeline:
|
259 |
+
@sb.utils.data_pipeline.takes("transcript")
|
260 |
+
@sb.utils.data_pipeline.provides("transcript", "tokens_list", "tokens_bos", "tokens_eos", "tokens")
|
261 |
+
def text_pipeline(transcript):
|
262 |
+
yield transcript
|
263 |
+
tokens_list = tokenizer.encode_as_ids(transcript)
|
264 |
+
yield tokens_list
|
265 |
+
tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list))
|
266 |
+
yield tokens_bos
|
267 |
+
tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]])
|
268 |
+
yield tokens_eos
|
269 |
+
tokens = torch.LongTensor(tokens_list)
|
270 |
+
yield tokens
|
271 |
+
|
272 |
+
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
|
273 |
+
|
274 |
+
# 4. Set output:
|
275 |
+
sb.dataio.dataset.set_output_keys(datasets, ["id", "sig", "transcript", "tokens_list", "tokens_bos", "tokens_eos", "tokens"])
|
276 |
+
|
277 |
+
return (train_data, valid_data, test_data)
|
278 |
+
|
279 |
+
|
280 |
+
if __name__ == "__main__":
|
281 |
+
# CLI:
|
282 |
+
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
|
283 |
+
|
284 |
+
# create ddp_group with the right communication protocol
|
285 |
+
sb.utils.distributed.ddp_init_group(run_opts)
|
286 |
+
|
287 |
+
with open(hparams_file) as fin:
|
288 |
+
hparams = load_hyperpyyaml(fin, overrides)
|
289 |
+
|
290 |
+
# Create experiment directory
|
291 |
+
sb.create_experiment_directory(
|
292 |
+
experiment_directory=hparams["output_folder"],
|
293 |
+
hyperparams_to_save=hparams_file,
|
294 |
+
overrides=overrides,
|
295 |
+
)
|
296 |
+
|
297 |
+
# here we create the datasets objects as well as tokenization and encoding
|
298 |
+
(train_data, valid_data, test_data) = dataio_prepare(hparams)
|
299 |
+
|
300 |
+
run_on_main(hparams["pretrainer"].collect_files)
|
301 |
+
hparams["pretrainer"].load_collected()
|
302 |
+
|
303 |
+
# Trainer initialization
|
304 |
+
asr_brain = ASR(
|
305 |
+
modules=hparams["modules"],
|
306 |
+
opt_class=hparams["opt_class"],
|
307 |
+
hparams=hparams,
|
308 |
+
run_opts=run_opts,
|
309 |
+
checkpointer=hparams["checkpointer"],
|
310 |
+
)
|
311 |
+
|
312 |
+
# We dynamically add the tokenizer to our brain class.
|
313 |
+
# NB: This tokenizer corresponds to the one used for the LM!!
|
314 |
+
asr_brain.tokenizer = hparams["tokenizer"]
|
315 |
+
train_dataloader_opts = hparams["train_dataloader_opts"]
|
316 |
+
valid_dataloader_opts = hparams["valid_dataloader_opts"]
|
317 |
+
|
318 |
+
|
319 |
+
# Training/validation loop
|
320 |
+
if hparams["skip_training"] == False:
|
321 |
+
print("Training...")
|
322 |
+
# Training
|
323 |
+
asr_brain.fit(
|
324 |
+
asr_brain.hparams.epoch_counter,
|
325 |
+
train_data,
|
326 |
+
valid_data,
|
327 |
+
train_loader_kwargs=train_dataloader_opts,
|
328 |
+
valid_loader_kwargs=valid_dataloader_opts,
|
329 |
+
)
|
330 |
+
|
331 |
+
else:
|
332 |
+
# evaluate
|
333 |
+
print("Evaluating")
|
334 |
+
asr_brain.run_inference(test_data, "WER", hparams["test_dataloader_opts"])
|
335 |
+
|