File size: 7,345 Bytes
786f240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import torch
from speechbrain.inference.interfaces import Pretrained
import librosa
import numpy as np


class ASR(Pretrained):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def encode_batch_w2v2(self, device, wavs, wav_lens=None, normalize=False):
        wavs = wavs.to(device)
        wav_lens = wav_lens.to(device)

        # Forward pass
        encoded_outputs = self.mods.encoder_w2v2(wavs.detach())
        # append
        tokens_bos = torch.zeros((wavs.size(0), 1), dtype=torch.long).to(device)
        embedded_tokens = self.mods.embedding(tokens_bos)
        decoder_outputs, _ = self.mods.decoder(embedded_tokens, encoded_outputs, wav_lens)

        # Output layer for seq2seq log-probabilities
        predictions = self.hparams.test_search(encoded_outputs, wav_lens)[0]
        # predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions]
        predicted_words = []
        for prediction in predictions:
            prediction = [token for token in prediction if token != 0]
            predicted_words.append(self.hparams.tokenizer.decode_ids(prediction).split(" "))
        prediction = []
        for sent in predicted_words:
            sent = self.filter_repetitions(sent, 3)
            prediction.append(sent)
        predicted_words = prediction
        return predicted_words


    def filter_repetitions(self, seq, max_repetition_length):
        seq = list(seq)
        output = []
        max_n = len(seq) // 2
        for n in range(max_n, 0, -1):
            max_repetitions = max(max_repetition_length // n, 1)
            # Don't need to iterate over impossible n values:
            # len(seq) can change a lot during iteration
            if (len(seq) <= n*2) or (len(seq) <= max_repetition_length):
                continue
            iterator = enumerate(seq)
            # Fill first buffers:
            buffers = [[next(iterator)[1]] for _ in range(n)]
            for seq_index, token in iterator:
                current_buffer = seq_index % n
                if token != buffers[current_buffer][-1]:
                    # No repeat, we can flush some tokens
                    buf_len = sum(map(len, buffers))
                    flush_start = (current_buffer-buf_len) % n
                    # Keep n-1 tokens, but possibly mark some for removal
                    for flush_index in range(buf_len - buf_len%n):
                        if (buf_len - flush_index) > n-1:
                            to_flush = buffers[(flush_index + flush_start) % n].pop(0)
                        else:
                            to_flush = None
                        # Here, repetitions get removed:
                        if (flush_index // n < max_repetitions) and to_flush is not None:
                            output.append(to_flush)
                        elif (flush_index // n >= max_repetitions) and to_flush is None:
                            output.append(to_flush)
                buffers[current_buffer].append(token)
            # At the end, final flush
            current_buffer += 1
            buf_len = sum(map(len, buffers))
            flush_start = (current_buffer-buf_len) % n
            for flush_index in range(buf_len):
                to_flush = buffers[(flush_index + flush_start) % n].pop(0)
                # Here, repetitions just get removed:
                if flush_index // n < max_repetitions:
                    output.append(to_flush)
            seq = []
            to_delete = 0
            for token in output:
                if token is None:
                    to_delete += 1
                elif to_delete > 0:
                    to_delete -= 1
                else:
                    seq.append(token)
            output = []
        return seq
    

    def increase_volume(self, waveform, threshold_db=-25):
        # Measure loudness using RMS
        loudness_vector = librosa.feature.rms(y=waveform)
        average_loudness = np.mean(loudness_vector)
        average_loudness_db = librosa.amplitude_to_db(average_loudness)

        print(f"Average Loudness: {average_loudness_db} dB")

        # Check if loudness is below threshold and apply gain if needed
        if average_loudness_db < threshold_db:
            # Calculate gain needed
            gain_db = threshold_db - average_loudness_db
            gain = librosa.db_to_amplitude(gain_db)  # Convert dB to amplitude factor

            # Apply gain to the audio signal
            waveform = waveform * gain
            loudness_vector = librosa.feature.rms(y=waveform)
            average_loudness = np.mean(loudness_vector)
            average_loudness_db = librosa.amplitude_to_db(average_loudness)

            print(f"Average Loudness: {average_loudness_db} dB")
        return waveform


    def classify_file_w2v2(self, waveform, device):
        # Get audio length in seconds
        sr = 16000
        audio_length = len(waveform) / sr
        
        if audio_length >= 30:
            print(f"Audio is too long ({audio_length:.2f} seconds), splitting into segments")
            # Detect non-silent segments

            non_silent_intervals = librosa.effects.split(waveform, top_db=20)  # Adjust top_db for sensitivity

            segments = []
            current_segment = []
            current_length = 0
            max_duration = 30 * sr  # Maximum segment duration in samples (20 seconds)


            for interval in non_silent_intervals:
                start, end = interval
                segment_part = waveform[start:end]

                # If adding the next part exceeds max duration, store the segment and start a new one
                if current_length + len(segment_part) > max_duration:
                    segments.append(np.concatenate(current_segment))
                    current_segment = []
                    current_length = 0

                current_segment.append(segment_part)
                current_length += len(segment_part)

            # Append the last segment if it's not empty
            if current_segment:
                segments.append(np.concatenate(current_segment))

            # Process each segment
            outputs = []
            for i, segment in enumerate(segments):
                print(f"Processing segment {i + 1}/{len(segments)}, length: {len(segment) / sr:.2f} seconds")

                # import soundfile as sf
                # sf.write(f"outputs/segment_{i}.wav", segment, sr)

                segment_tensor = torch.tensor(segment).to(device)

                # Fake a batch for the segment
                batch = segment_tensor.unsqueeze(0).to(device)
                rel_length = torch.tensor([1.0]).to(device)  # Adjust if necessary

                # Pass the segment through the ASR model
                result = " ".join(self.encode_batch_w2v2(device, batch, rel_length)[0])
                # outputs.append(result)
                yield result
        else:
            waveform = torch.tensor(waveform).to(device)
            waveform = waveform.to(device)
            # Fake a batch:
            batch = waveform.unsqueeze(0)
            rel_length = torch.tensor([1.0]).to(device)
            outputs = " ".join(self.encode_batch_w2v2(device, batch, rel_length)[0])
            yield outputs