MaHaWo commited on
Commit
f532fdf
·
1 Parent(s): ce0a037

add kwargs to all the model implemnetations

Browse files
birdnet_custom_v2.4/model.py CHANGED
@@ -49,6 +49,7 @@ class Model(ModelBase):
49
  model_path: str = None,
50
  sigmoid_sensitivity: float = 1.0,
51
  num_threads: int = 1,
 
52
  ):
53
 
54
  self.default_model_path = str(Path(default_model_path) / "model.tflite")
@@ -78,6 +79,7 @@ class Model(ModelBase):
78
  labels_path=classifier_labels_path,
79
  num_threads=num_threads,
80
  sensitivity=sigmoid_sensitivity,
 
81
  )
82
 
83
  def load_model(self):
 
49
  model_path: str = None,
50
  sigmoid_sensitivity: float = 1.0,
51
  num_threads: int = 1,
52
+ **kwargs
53
  ):
54
 
55
  self.default_model_path = str(Path(default_model_path) / "model.tflite")
 
79
  labels_path=classifier_labels_path,
80
  num_threads=num_threads,
81
  sensitivity=sigmoid_sensitivity,
82
+ **kwargs
83
  )
84
 
85
  def load_model(self):
birdnet_custom_v2.4/preprocessor.py CHANGED
@@ -14,6 +14,7 @@ class Preprocessor(ppb.PreprocessorBase):
14
  overlap: float = 0.0,
15
  sample_secs: int = 3.0,
16
  resample_type: str = "kaiser_fast",
 
17
  ):
18
  """
19
  __init__ Construct a new preprocesssor for custom birdnet classifiers from given parameters, and use defaults for the ones not present.
@@ -31,6 +32,7 @@ class Preprocessor(ppb.PreprocessorBase):
31
  overlap=overlap,
32
  sample_secs=sample_secs,
33
  resample_type=resample_type,
 
34
  )
35
 
36
  def process_audio_data(self, rawdata: np.ndarray) -> list:
 
14
  overlap: float = 0.0,
15
  sample_secs: int = 3.0,
16
  resample_type: str = "kaiser_fast",
17
+ **kwargs
18
  ):
19
  """
20
  __init__ Construct a new preprocesssor for custom birdnet classifiers from given parameters, and use defaults for the ones not present.
 
32
  overlap=overlap,
33
  sample_secs=sample_secs,
34
  resample_type=resample_type,
35
+ **kwargs
36
  )
37
 
38
  def process_audio_data(self, rawdata: np.ndarray) -> list:
birdnet_default_v2.4/model.py CHANGED
@@ -18,6 +18,7 @@ class Model(ModelBase):
18
  num_threads: int = 1,
19
  sigmoid_sensitivity: float = 1.0,
20
  species_list_file: str = None,
 
21
  ):
22
  """
23
  __init__ Create a new model instance that uses birdnet-analyzer models for bird species classification
@@ -43,6 +44,7 @@ class Model(ModelBase):
43
  labels_path,
44
  num_threads=num_threads,
45
  sensitivity=sigmoid_sensitivity,
 
46
  )
47
 
48
  # store input and output index to not have to retrieve them each time an inference is made
 
18
  num_threads: int = 1,
19
  sigmoid_sensitivity: float = 1.0,
20
  species_list_file: str = None,
21
+ **kwargs
22
  ):
23
  """
24
  __init__ Create a new model instance that uses birdnet-analyzer models for bird species classification
 
44
  labels_path,
45
  num_threads=num_threads,
46
  sensitivity=sigmoid_sensitivity,
47
+ **kwargs
48
  )
49
 
50
  # store input and output index to not have to retrieve them each time an inference is made
birdnet_default_v2.4/preprocessor.py CHANGED
@@ -14,6 +14,7 @@ class Preprocessor(ppb.PreprocessorBase):
14
  overlap: float = 0.0,
15
  sample_secs: int = 3.0,
16
  resample_type: str = "kaiser_fast",
 
17
  ):
18
  """
19
  __init__ Construct a new preprocesssor for custom birdnet classifiers from given parameters, and use defaults for the ones not present.
@@ -31,6 +32,7 @@ class Preprocessor(ppb.PreprocessorBase):
31
  overlap=overlap,
32
  sample_secs=sample_secs,
33
  resample_type=resample_type,
 
34
  )
35
 
36
  def process_audio_data(self, rawdata: np.ndarray) -> list:
 
14
  overlap: float = 0.0,
15
  sample_secs: int = 3.0,
16
  resample_type: str = "kaiser_fast",
17
+ **kwargs
18
  ):
19
  """
20
  __init__ Construct a new preprocesssor for custom birdnet classifiers from given parameters, and use defaults for the ones not present.
 
32
  overlap=overlap,
33
  sample_secs=sample_secs,
34
  resample_type=resample_type,
35
+ **kwargs
36
  )
37
 
38
  def process_audio_data(self, rawdata: np.ndarray) -> list:
google_bird_classification/model.py CHANGED
@@ -7,7 +7,7 @@ import pandas as pd
7
 
8
  class Model(ModelBase):
9
 
10
- def __init__(self, model_path: str, num_threads: int = 1, species_list_file=None):
11
  """
12
  __init__ Create a new Model instance using the google perch model.
13
 
@@ -26,6 +26,7 @@ class Model(ModelBase):
26
  model_path,
27
  labels_path,
28
  num_threads=num_threads,
 
29
  # sensitivity kwarg doesn't exist here
30
  ) # num_threads doesn't do anything here.
31
 
 
7
 
8
  class Model(ModelBase):
9
 
10
+ def __init__(self, model_path: str, num_threads: int = 1, species_list_file=None, **kwargs):
11
  """
12
  __init__ Create a new Model instance using the google perch model.
13
 
 
26
  model_path,
27
  labels_path,
28
  num_threads=num_threads,
29
+ **kwargs
30
  # sensitivity kwarg doesn't exist here
31
  ) # num_threads doesn't do anything here.
32
 
google_bird_classification/preprocessor.py CHANGED
@@ -35,6 +35,7 @@ class Preprocessor(ppb.PreprocessorBase):
35
  sample_rate=sample_rate,
36
  sample_secs=sample_secs,
37
  resample_type=resample_type,
 
38
  )
39
 
40
  def process_audio_data(self, rawdata: np.array) -> np.array:
 
35
  sample_rate=sample_rate,
36
  sample_secs=sample_secs,
37
  resample_type=resample_type,
38
+ **kwargs
39
  )
40
 
41
  def process_audio_data(self, rawdata: np.array) -> np.array: