|
from pathlib import Path |
|
import numpy as np |
|
|
|
from iSparrow.sparrow_model_base import ModelBase |
|
|
|
|
|
|
|
|
|
class Model(ModelBase): |
|
""" |
|
Model Model class representing the the default birdnet model. Does currently not support custom species list or species prediction based on coordinates. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
model_path: str, |
|
num_threads: int = 1, |
|
sigmoid_sensitivity: float = 1.0, |
|
species_list_file: str = None, |
|
**kwargs |
|
): |
|
""" |
|
__init__ Create a new model instance that uses birdnet-analyzer models for bird species classification |
|
|
|
Args: |
|
model_path (str): Path to the location of the model file to be loaded |
|
num_threads (int, optional): Number of threads used for inference. Defaults to 1. |
|
sigmoid_sensitivity (float, optional): Parameter of the sigmoid function used to compute probabilities. Defaults to 1.0. |
|
|
|
Raises: |
|
AnalyzerConfigurationError: The model file 'model.tflite' doesn't exist at the given path. |
|
AnalyzerConfigurationError: The labels file 'labels.txt' doesn't exist at the given path. |
|
""" |
|
|
|
labels_path = str(Path(model_path) / "labels.txt") |
|
|
|
model_path = str(Path(model_path) / "model.tflite") |
|
|
|
|
|
super().__init__( |
|
"birdnet_default", |
|
model_path, |
|
labels_path, |
|
num_threads=num_threads, |
|
**kwargs |
|
) |
|
|
|
self.sigmoid_sensitivity = sigmoid_sensitivity |
|
|
|
|
|
input_details = self.model.get_input_details() |
|
|
|
output_details = self.model.get_output_details() |
|
|
|
|
|
self.input_layer_index = input_details[0]["index"] |
|
|
|
|
|
self.output_layer_index = output_details[0]["index"] |
|
|
|
def load_species_list(self): |
|
|
|
pass |
|
|
|
def predict(self, sample: np.array) -> np.array: |
|
""" |
|
predict Make inference about the bird species for the preprocessed data passed to this function as arguments. |
|
|
|
Args: |
|
data (np.array): list of preprocessed data chunks |
|
Returns: |
|
list: List of (label, inferred_probability) |
|
""" |
|
data = np.array([sample], dtype="float32") |
|
|
|
self.model.resize_tensor_input( |
|
self.input_layer_index, [len(data), *data[0].shape] |
|
) |
|
self.model.allocate_tensors() |
|
|
|
|
|
self.model.set_tensor(self.input_layer_index, np.array(data, dtype="float32")) |
|
self.model.invoke() |
|
|
|
prediction = self.model.get_tensor(self.output_layer_index) |
|
|
|
confidence = self._sigmoid( |
|
np.array(prediction), sigmoid_sensitivity=-self.sigmoid_sensitivity |
|
) |
|
|
|
return confidence |
|
|
|
@classmethod |
|
def from_cfg(cls, sparrow_folder: str, cfg: dict): |
|
""" |
|
from_cfg Create a new instance from a dictionary containing keyword arguments. Usually loaded from a config file. |
|
|
|
Args: |
|
sparrow_dir (str): Installation directory of the Sparrow package |
|
cfg (dict): Dictionary containing the keyword arguments |
|
|
|
Returns: |
|
Model: New model instance created with the supplied kwargs. |
|
""" |
|
cfg["model_path"] = str( |
|
Path(sparrow_folder) / Path("models") / cfg["model_path"] |
|
) |
|
|
|
return cls(**cfg) |
|
|