import torch from torch import nn class GateMLP(nn.Module): def __init__(self, d_model, expand): super().__init__() self.proj_1 = nn.Linear(d_model, d_model * expand, bias=False) self.proj_2 = nn.Linear(d_model, d_model * expand, bias=False) self.proj_3 = nn.Linear(d_model * expand, d_model, bias=True) self.layer_norm = nn.LayerNorm(d_model) def forward(self, x): x, x1 = self.proj_1(x), self.proj_2(x) x = x * torch.sigmoid(x1) x = self.proj_3(x) x = self.layer_norm(x) return x class GMLPModel(nn.Module): config = {} def __init__(self, positional_embedding): super().__init__() gmlp_config = { "d_model": self.config["d_model"], "expand": self.config["expand"], } self.gmlp_forward = nn.Sequential(*[GateMLP(**gmlp_config) for _ in range(self.config["num_layers"])]) pe = positional_embedding[None, :, :] if self.config.get("trainable_pe"): self.pe = nn.Parameter(pe) else: # fixed positional embedding self.register_buffer("pe", pe) def forward(self, output_shape, condition=None): assert len(condition.shape) == 3 x = self.gmlp_forward(self.pe.repeat(output_shape[0], 1, 1) + condition) return x