File size: 5,747 Bytes
f7009b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# set global seed
import random
import numpy as np
import torch
seed = SEED = 21
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
np.random.seed(seed)
random.seed(seed)
try: # relative import
from model import Model
except ImportError:
from .model import Model
# import
import torch.nn as nn
from torch import optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder as Dataset
from tqdm.auto import tqdm
import os
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
# load additional config
import json
config_file = os.path.join(os.path.dirname(os.path.dirname(__file__)), "config.json")
with open(config_file, "r") as f:
additional_config = json.load(f)
# config
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config = {
"dataset_root": "from_additional_config",
"batch_size": 200 if __name__ == "__main__" else 200,
"num_workers": 4,
"learning_rate": 1e-6,
"weight_decay": 0.1,
"epochs": 0,
"save_learning_rate": 1e-6,
"total_save_number": 50,
"tag": os.path.basename(os.path.dirname(__file__)),
}
config.update(additional_config)
# Data
dataset = Dataset(
root=config["imagenet_root"]["train"],
transform=transforms.Compose([
transforms.Resize(224),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.RandAugment(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
)
train_loader = DataLoader(
dataset=dataset,
batch_size=config["batch_size"],
num_workers=config["num_workers"],
shuffle=True,
drop_last=True,
pin_memory=True,
persistent_workers=True,
)
test_loader = DataLoader(
dataset=Dataset(
root=config["imagenet_root"]["test"],
transform=transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])),
batch_size=config["batch_size"],
num_workers=config["num_workers"],
shuffle=False,
pin_memory=True,
persistent_workers=True,
pin_memory_device="cuda",
)
# Model
model, head = Model()
model = model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.AdamW(
model.parameters(),
lr=config["learning_rate"],
weight_decay=config["weight_decay"],
)
scheduler = lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=config["epochs"],
eta_min=config["save_learning_rate"],
)
# Training
def train(model=model, optimizer=optimizer, scheduler=scheduler):
model.train()
for batch_idx, (inputs, targets) in tqdm(enumerate(train_loader),
total=len(dataset) // config["batch_size"]):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16):
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
if scheduler is not None:
scheduler.step()
# test
@torch.no_grad()
def test(model=model):
model.eval()
all_targets = []
all_predicts = []
test_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in tqdm(enumerate(test_loader),
total=len(test_loader.dataset) // config["batch_size"]):
inputs, targets = inputs.to(device), targets.to(device)
with torch.cuda.amp.autocast(enabled=False, dtype=torch.bfloat16):
outputs = model(inputs)
loss = criterion(outputs, targets)
# to logging losses
all_targets.extend(targets.flatten().tolist())
test_loss += loss.item()
_, predicts = outputs.max(1)
all_predicts.extend(predicts.flatten().tolist())
total += targets.size(0)
correct += predicts.eq(targets).sum().item()
loss = test_loss / (batch_idx + 1)
acc = correct / total
print(f"Loss: {loss:.4f} | Acc: {acc:.4f}\n")
model.train()
return loss, acc, all_targets, all_predicts
# save train
def save_train(model=model, optimizer=optimizer):
model.train()
for batch_idx, (inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16):
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
# Save checkpoint
if batch_idx % (len(dataset) // train_loader.batch_size // config["total_save_number"]) == 0:
_, acc, _, _ = test(model=model)
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
save_state = {key: value.cpu().to(torch.float32) for key, value in model.state_dict().items()}
torch.save(save_state, f"checkpoint/{str(batch_idx).zfill(4)}_acc{acc:.4f}_seed{seed:04d}_{config['tag']}.pth")
print("save:", f"checkpoint/{str(batch_idx).zfill(4)}_acc{acc:.4f}_seed{seed:04d}_{config['tag']}.pth")
# main
if __name__ == '__main__':
test(model=model)
for epoch in range(config["epochs"]):
train(model=model, optimizer=optimizer, scheduler=scheduler)
test(model=model)
save_train(model=model, optimizer=optimizer) |