File size: 5,747 Bytes
f7009b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# set global seed
import random
import numpy as np
import torch
seed = SEED = 21
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
np.random.seed(seed)
random.seed(seed)


try:  # relative import
    from model import Model
except ImportError:
    from .model import Model

# import
import torch.nn as nn
from torch import optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder as Dataset
from tqdm.auto import tqdm
import os
import warnings
warnings.filterwarnings("ignore", category=UserWarning)

# load additional config
import json
config_file = os.path.join(os.path.dirname(os.path.dirname(__file__)), "config.json")
with open(config_file, "r") as f:
    additional_config = json.load(f)




# config
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config = {
    "dataset_root": "from_additional_config",
    "batch_size": 200 if __name__ == "__main__" else 200,
    "num_workers": 4,
    "learning_rate": 1e-6,
    "weight_decay": 0.1,
    "epochs": 0,
    "save_learning_rate": 1e-6,
    "total_save_number": 50,
    "tag": os.path.basename(os.path.dirname(__file__)),
}
config.update(additional_config)




# Data
dataset = Dataset(
    root=config["imagenet_root"]["train"],
    transform=transforms.Compose([
        transforms.Resize(224),
        transforms.RandomCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.RandAugment(),
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
    ])
)
train_loader = DataLoader(
    dataset=dataset,
    batch_size=config["batch_size"],
    num_workers=config["num_workers"],
    shuffle=True,
    drop_last=True,
    pin_memory=True,
    persistent_workers=True,
)
test_loader = DataLoader(
    dataset=Dataset(
        root=config["imagenet_root"]["test"],
        transform=transforms.Compose([
            transforms.Resize(224),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ])),
    batch_size=config["batch_size"],
    num_workers=config["num_workers"],
    shuffle=False,
    pin_memory=True,
    persistent_workers=True,
    pin_memory_device="cuda",
)

# Model
model, head = Model()
model = model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.AdamW(
    model.parameters(),
    lr=config["learning_rate"],
    weight_decay=config["weight_decay"],
)
scheduler = lr_scheduler.CosineAnnealingLR(
    optimizer,
    T_max=config["epochs"],
    eta_min=config["save_learning_rate"],
)




# Training
def train(model=model, optimizer=optimizer, scheduler=scheduler):
    model.train()
    for batch_idx, (inputs, targets) in tqdm(enumerate(train_loader),
                                             total=len(dataset) // config["batch_size"]):
        inputs, targets = inputs.to(device), targets.to(device)
        optimizer.zero_grad()
        with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16):
            outputs = model(inputs)
            loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()
    if scheduler is not None:
        scheduler.step()

# test
@torch.no_grad()
def test(model=model):
    model.eval()
    all_targets = []
    all_predicts = []
    test_loss = 0
    correct = 0
    total = 0
    for batch_idx, (inputs, targets) in tqdm(enumerate(test_loader),
                                             total=len(test_loader.dataset) // config["batch_size"]):
        inputs, targets = inputs.to(device), targets.to(device)
        with torch.cuda.amp.autocast(enabled=False, dtype=torch.bfloat16):
            outputs = model(inputs)
            loss = criterion(outputs, targets)
        # to logging losses
        all_targets.extend(targets.flatten().tolist())
        test_loss += loss.item()
        _, predicts = outputs.max(1)
        all_predicts.extend(predicts.flatten().tolist())
        total += targets.size(0)
        correct += predicts.eq(targets).sum().item()
    loss = test_loss / (batch_idx + 1)
    acc = correct / total
    print(f"Loss: {loss:.4f} | Acc: {acc:.4f}\n")
    model.train()
    return loss, acc, all_targets, all_predicts

# save train
def save_train(model=model, optimizer=optimizer):
    model.train()
    for batch_idx, (inputs, targets) in enumerate(train_loader):
        inputs, targets = inputs.to(device), targets.to(device)
        optimizer.zero_grad()
        with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16):
            outputs = model(inputs)
            loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()
        # Save checkpoint
        if batch_idx % (len(dataset) // train_loader.batch_size // config["total_save_number"]) == 0:
            _, acc, _, _ = test(model=model)
            if not os.path.isdir('checkpoint'):
                os.mkdir('checkpoint')
            save_state = {key: value.cpu().to(torch.float32) for key, value in model.state_dict().items()}
            torch.save(save_state, f"checkpoint/{str(batch_idx).zfill(4)}_acc{acc:.4f}_seed{seed:04d}_{config['tag']}.pth")
            print("save:", f"checkpoint/{str(batch_idx).zfill(4)}_acc{acc:.4f}_seed{seed:04d}_{config['tag']}.pth")




# main
if __name__ == '__main__':
    test(model=model)
    for epoch in range(config["epochs"]):
        train(model=model, optimizer=optimizer, scheduler=scheduler)
        test(model=model)
    save_train(model=model, optimizer=optimizer)