--- library_name: transformers license: apache-2.0 base_model: t5-small tags: - summarization - generated_from_trainer datasets: - multi_news metrics: - rouge model-index: - name: t5-small-Abstractive-Summarizer results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: multi_news type: multi_news config: default split: validation args: default metrics: - name: Rouge1 type: rouge value: 15.7032 --- # t5-small-Abstractive-Summarizer This model is a fine-tuned version of [t5-small](https://huggingface.co./t5-small) on the multi_news dataset. It achieves the following results on the evaluation set: - Loss: 2.7737 - Rouge1: 15.7032 - Rouge2: 5.2433 - Rougel: 12.282 - Rougelsum: 14.0946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00056 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 3.118 | 1.0 | 113 | 2.7677 | 15.1343 | 4.7712 | 11.8812 | 13.386 | | 2.7857 | 2.0 | 226 | 2.7609 | 15.7641 | 4.8705 | 12.0955 | 13.9779 | | 2.6158 | 3.0 | 339 | 2.7494 | 15.1515 | 4.4523 | 11.7147 | 13.4181 | | 2.4962 | 4.0 | 452 | 2.7743 | 15.344 | 5.1073 | 12.1574 | 13.7917 | | 2.4304 | 5.0 | 565 | 2.7737 | 15.7032 | 5.2433 | 12.282 | 14.0946 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1