File size: 1,125 Bytes
f05a712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
999bffc
f05a712
 
 
 
 
 
 
 
 
6e19e15
 
84295e7
6e19e15
 
 
 
 
 
 
 
84295e7
6e19e15
84295e7
6e19e15
f05a712
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
datasets:
- kyujinpy/KOpen-platypus
language:
- ko
- en
pipeline_tag: text-generation
---

### Model Card for Model ID
base_model : [Ko-Llama3-Luxia-8B](https://huggingface.co./saltlux/Ko-Llama3-Luxia-8B)

### Basic usage
```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("MDDDDR/Ko-Luxia-8B-it-v0.3")
model = AutoModelForCausalLM.from_pretrained(
    "MDDDDR/Ko-Luxia-8B-it-v0.3",
    device_map="auto",
    torch_dtype=torch.bfloat16
)

input_text = "사과가 뭐야?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```

### Training dataset
dataset : [kyujinpy/KOpen-platypus](https://huggingface.co./datasets/kyujinpy/KOpen-platypus)

### lora_config and bnb_config in Training

```python
bnd_config = BitsAndBytesConfig(
  load_in_8bit = True
)

lora_config = LoraConfig(
  r = 16,
  lora_alpha = 16,
  lora_dropout = 0.05,
  target_modules = ['gate_proj', 'up_proj', 'down_proj']
)
```

### Hardware
RTX 3090 Ti 24GB x 1