--- license: mit language: - en pipeline_tag: text-generation library_name: transformers tags: - llm - dataset combination - Pretraining --- # SlimPajama-DC
SlimPajama-DC logo
[**SlimPajama-DC**](https://arxiv.org/abs/2309.10818) is a set of 1.3B parameter language models, distinctively trained on the different combinations of 330B subsets of SlimPajama dataset. | Details of Dataset Combinations for Different Models | |------------------------------------------------|
details of dataset combinations
Despite being trained on a smaller amount of 330B tokens compared to TinyLlama and Olmo's 3 trillion, SlimPajama-DC surpasses TinyLlama and Olmo in some challenging English tasks. | Our tests comprise: (1) AI2 Reasoning Challenge (25-shot); (2) HellaSwag (10-shot); (3) MMLU (5-shot); (4) TruthfulQA (0-shot) | |------------------------------------------------|
results
‡ represents the RefinedWeb CC. | Performance on More Benchmarks | |------------------------------------------------|
results
ARC easy and ARC challenge are evaluated using 25-shot. All other evaluation benchmarks are tested on 0-shot. * represents the results are averaged across multiple sub-items inside each benchmark dataset. # Dataset Our full dataset is available at [SlimPajama-627B-DC](https://huggingface.co./datasets/MBZUAI-LLM/SlimPajama-627B-DC). # Model Usage To load a specific checkpoint, use the revision argument as shown below, for example, `SlimPajama-DC-6`. All the revisions can be seen from the branch dropdown in the "Files and versions" tab. If no revision argument is provided, it will load the default checkpoint `SlimPajama-DC-6`. ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "MBZUAI-LLM/SlimPajama-DC", revision="SlimPajama-DC-6", trust_remote_code=True ) model = AutoModelForCausalLM.from_pretrained( "MBZUAI-LLM/SlimPajama-DC", revision="SlimPajama-DC-6", trust_remote_code=True ) prompt = 'int add(int x, int y) {' input_ids = tokenizer(prompt, return_tensors="pt").input_ids gen_tokens = model.generate(input_ids, do_sample=True, max_length=400) print("-"*20 + "Output for model" + 20 * '-') print(tokenizer.batch_decode(gen_tokens)[0]) ``` # Citation **BibTeX:** ```bibtex @article{shen2023slimpajama, title={Slimpajama-dc: Understanding data combinations for llm training}, author={Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Zhengzhong Liu, Hongyi Wang, Bowen Tan, Joel Hestness, Natalia Vassilieva, Daria Soboleva, Eric Xing}, journal={arXiv preprint arXiv:2309.10818}, year={2023} } ```