FreddeFrallan commited on
Commit
8b8b311
1 Parent(s): ee064c9

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -0
README.md ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <br />
2
+ <p align="center">
3
+ <h1 align="center">M-BERT Base 69</h1>
4
+
5
+ <p align="center">
6
+ <a href="https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/M-BERT%20Base%2069">Github Model Card</a>
7
+ </p>
8
+ </p>
9
+
10
+ ## Usage
11
+ To use this model along with the original CLIP vision encoder you need to download the code and additional linear weights from the [Multilingual-CLIP Github](https://github.com/FreddeFrallan/Multilingual-CLIP).
12
+
13
+ Once this is done, you can load and use the model with the following code
14
+ ```python
15
+ from src import multilingual_clip
16
+
17
+ model = multilingual_clip.load_model('M-BERT-Base-40')
18
+ embeddings = model(['Älgen är skogens konung!', 'Wie leben Eisbären in der Antarktis?', 'Вы знали, что все белые медведи левши?'])
19
+ print(embeddings.shape)
20
+ # Yields: torch.Size([3, 640])
21
+ ```
22
+
23
+ <!-- ABOUT THE PROJECT -->
24
+ ## About
25
+ A [distilbert-base-multilingual](https://huggingface.co/distilbert-base-multilingual-cased) tuned to match the embedding space for [69 languages](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/Model%20Cards/M-BERT%20Base%2069/Fine-Tune-Languages.md), to the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder. <br>
26
+ A full list of the 100 languages used during pre-training can be found [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages), and a list of the 4069languages used during fine-tuning can be found in [SupportedLanguages.md](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/Model%20Cards/M-BERT%20Base%2069/Fine-Tune-Languages.md).
27
+
28
+ Training data pairs was generated by sampling 40k sentences for each language from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into the corresponding language.
29
+ All translation was done using the [AWS translate service](https://aws.amazon.com/translate/), the quality of these translations have currently not been analyzed, but one can assume the quality varies between the 69 languages.
30
+