--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: nsfw-image-detector results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9315615772103526 --- # nsfw-image-detector This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8138 - Accuracy: 0.9316 - Accuracy K: 0.9887 You can access 384 version on: https://huggingface.co./LukeJacob2023/nsfw-image-detector-384 ## Model description Labels: ['drawings', 'hentai', 'neutral', 'porn', 'sexy'] ## Intended uses & limitations ## Training and evaluation data A custom dataset about 28k images, if you need to improve your domain's accurate, you can contribute the dataset to me. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy K | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:| | 0.7836 | 1.0 | 720 | 0.3188 | 0.9085 | 0.9891 | | 0.2441 | 2.0 | 1440 | 0.2382 | 0.9257 | 0.9936 | | 0.1412 | 3.0 | 2160 | 0.2334 | 0.9335 | 0.9932 | | 0.0857 | 4.0 | 2880 | 0.2934 | 0.9347 | 0.9934 | | 0.0569 | 5.0 | 3600 | 0.4500 | 0.9307 | 0.9927 | | 0.0371 | 6.0 | 4320 | 0.5524 | 0.9357 | 0.9910 | | 0.0232 | 7.0 | 5040 | 0.6691 | 0.9347 | 0.9913 | | 0.02 | 8.0 | 5760 | 0.7408 | 0.9335 | 0.9917 | | 0.0154 | 9.0 | 6480 | 0.8138 | 0.9316 | 0.9887 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.15.0 - Tokenizers 0.15.0