--- language: - pt license: mit tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy base_model: xlm-roberta-large model-index: - name: xlm-roberta-large-finetuned-lener-br results: - task: type: token-classification name: Token Classification dataset: name: lener_br type: lener_br config: lener_br split: train args: lener_br metrics: - type: precision value: 0.8762313715584744 name: Precision - type: recall value: 0.8966141121736882 name: Recall - type: f1 value: 0.8863055697496168 name: F1 - type: accuracy value: 0.979500052295785 name: Accuracy --- # xlm-roberta-large-finetuned-lener-br This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co./xlm-roberta-large) on the lener_br dataset. It achieves the following results on the evaluation set: - Loss: nan - Precision: 0.8762 - Recall: 0.8966 - F1: 0.8863 - Accuracy: 0.9795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0785 | 1.0 | 3914 | nan | 0.7119 | 0.8410 | 0.7711 | 0.9658 | | 0.076 | 2.0 | 7828 | nan | 0.8397 | 0.8679 | 0.8536 | 0.9740 | | 0.0434 | 3.0 | 11742 | nan | 0.8545 | 0.8666 | 0.8605 | 0.9693 | | 0.022 | 4.0 | 15656 | nan | 0.8293 | 0.8573 | 0.8431 | 0.9652 | | 0.0284 | 5.0 | 19570 | nan | 0.8789 | 0.8571 | 0.8678 | 0.9776 | | 0.029 | 6.0 | 23484 | nan | 0.8521 | 0.8788 | 0.8653 | 0.9771 | | 0.0227 | 7.0 | 27398 | nan | 0.7648 | 0.8873 | 0.8215 | 0.9686 | | 0.0219 | 8.0 | 31312 | nan | 0.8609 | 0.9026 | 0.8813 | 0.9780 | | 0.0121 | 9.0 | 35226 | nan | 0.8746 | 0.8979 | 0.8861 | 0.9812 | | 0.0087 | 10.0 | 39140 | nan | 0.8829 | 0.8827 | 0.8828 | 0.9808 | | 0.0081 | 11.0 | 43054 | nan | 0.8740 | 0.8749 | 0.8745 | 0.9765 | | 0.0058 | 12.0 | 46968 | nan | 0.8838 | 0.8842 | 0.8840 | 0.9788 | | 0.0044 | 13.0 | 50882 | nan | 0.869 | 0.8984 | 0.8835 | 0.9788 | | 0.002 | 14.0 | 54796 | nan | 0.8762 | 0.8966 | 0.8863 | 0.9795 | | 0.0017 | 15.0 | 58710 | nan | 0.8729 | 0.8982 | 0.8854 | 0.9791 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1