Luciano commited on
Commit
f8738c9
·
1 Parent(s): 4b864fe

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -12
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.7064853556485355
28
  - name: Recall
29
  type: recall
30
- value: 0.8728353579736366
31
  - name: F1
32
  type: f1
33
- value: 0.780899525956758
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9653054820924291
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,10 +44,10 @@ should probably proofread and complete it, then remove this comment. -->
44
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lener_br dataset.
45
  It achieves the following results on the evaluation set:
46
  - Loss: nan
47
- - Precision: 0.7065
48
- - Recall: 0.8728
49
- - F1: 0.7809
50
- - Accuracy: 0.9653
51
 
52
  ## Model description
53
 
@@ -72,13 +72,27 @@ The following hyperparameters were used during training:
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
75
- - num_epochs: 1
76
 
77
  ### Training results
78
 
79
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | 0.0784 | 1.0 | 1957 | nan | 0.7065 | 0.8728 | 0.7809 | 0.9653 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
 
83
 
84
  ### Framework versions
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.7563938618925832
28
  - name: Recall
29
  type: recall
30
+ value: 0.9172912897389507
31
  - name: F1
32
  type: f1
33
+ value: 0.8291087489779232
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9672628386152076
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lener_br dataset.
45
  It achieves the following results on the evaluation set:
46
  - Loss: nan
47
+ - Precision: 0.7564
48
+ - Recall: 0.9173
49
+ - F1: 0.8291
50
+ - Accuracy: 0.9673
51
 
52
  ## Model description
53
 
 
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
75
+ - num_epochs: 15
76
 
77
  ### Training results
78
 
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.0939 | 1.0 | 1957 | nan | 0.6718 | 0.8545 | 0.7522 | 0.9609 |
82
+ | 0.0462 | 2.0 | 3914 | nan | 0.7637 | 0.8739 | 0.8151 | 0.9657 |
83
+ | 0.0286 | 3.0 | 5871 | nan | 0.7357 | 0.9077 | 0.8127 | 0.9691 |
84
+ | 0.0253 | 4.0 | 7828 | nan | 0.7497 | 0.8989 | 0.8176 | 0.9690 |
85
+ | 0.0209 | 5.0 | 9785 | nan | 0.7363 | 0.9196 | 0.8178 | 0.9624 |
86
+ | 0.0149 | 6.0 | 11742 | nan | 0.7209 | 0.9201 | 0.8084 | 0.9673 |
87
+ | 0.0149 | 7.0 | 13699 | nan | 0.7508 | 0.8987 | 0.8181 | 0.9682 |
88
+ | 0.0099 | 8.0 | 15656 | nan | 0.7837 | 0.8692 | 0.8243 | 0.9617 |
89
+ | 0.0067 | 9.0 | 17613 | nan | 0.8086 | 0.8638 | 0.8353 | 0.9703 |
90
+ | 0.0046 | 10.0 | 19570 | nan | 0.7518 | 0.9209 | 0.8278 | 0.9682 |
91
+ | 0.0047 | 11.0 | 21527 | nan | 0.7504 | 0.9101 | 0.8226 | 0.9681 |
92
+ | 0.002 | 12.0 | 23484 | nan | 0.7890 | 0.9082 | 0.8444 | 0.9646 |
93
+ | 0.0033 | 13.0 | 25441 | nan | 0.7629 | 0.9157 | 0.8324 | 0.9675 |
94
+ | 0.0029 | 14.0 | 27398 | nan | 0.7484 | 0.9155 | 0.8235 | 0.9658 |
95
+ | 0.0009 | 15.0 | 29355 | nan | 0.7564 | 0.9173 | 0.8291 | 0.9673 |
96
 
97
 
98
  ### Framework versions