update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,10 +44,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lener_br dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
- Loss: nan
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -72,13 +72,27 @@ The following hyperparameters were used during training:
|
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
-
- num_epochs:
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
-
| Training Loss | Epoch | Step
|
80 |
-
|
81 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
|
84 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.7563938618925832
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.9172912897389507
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.8291087489779232
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.9672628386152076
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lener_br dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
- Loss: nan
|
47 |
+
- Precision: 0.7564
|
48 |
+
- Recall: 0.9173
|
49 |
+
- F1: 0.8291
|
50 |
+
- Accuracy: 0.9673
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 15
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.0939 | 1.0 | 1957 | nan | 0.6718 | 0.8545 | 0.7522 | 0.9609 |
|
82 |
+
| 0.0462 | 2.0 | 3914 | nan | 0.7637 | 0.8739 | 0.8151 | 0.9657 |
|
83 |
+
| 0.0286 | 3.0 | 5871 | nan | 0.7357 | 0.9077 | 0.8127 | 0.9691 |
|
84 |
+
| 0.0253 | 4.0 | 7828 | nan | 0.7497 | 0.8989 | 0.8176 | 0.9690 |
|
85 |
+
| 0.0209 | 5.0 | 9785 | nan | 0.7363 | 0.9196 | 0.8178 | 0.9624 |
|
86 |
+
| 0.0149 | 6.0 | 11742 | nan | 0.7209 | 0.9201 | 0.8084 | 0.9673 |
|
87 |
+
| 0.0149 | 7.0 | 13699 | nan | 0.7508 | 0.8987 | 0.8181 | 0.9682 |
|
88 |
+
| 0.0099 | 8.0 | 15656 | nan | 0.7837 | 0.8692 | 0.8243 | 0.9617 |
|
89 |
+
| 0.0067 | 9.0 | 17613 | nan | 0.8086 | 0.8638 | 0.8353 | 0.9703 |
|
90 |
+
| 0.0046 | 10.0 | 19570 | nan | 0.7518 | 0.9209 | 0.8278 | 0.9682 |
|
91 |
+
| 0.0047 | 11.0 | 21527 | nan | 0.7504 | 0.9101 | 0.8226 | 0.9681 |
|
92 |
+
| 0.002 | 12.0 | 23484 | nan | 0.7890 | 0.9082 | 0.8444 | 0.9646 |
|
93 |
+
| 0.0033 | 13.0 | 25441 | nan | 0.7629 | 0.9157 | 0.8324 | 0.9675 |
|
94 |
+
| 0.0029 | 14.0 | 27398 | nan | 0.7484 | 0.9155 | 0.8235 | 0.9658 |
|
95 |
+
| 0.0009 | 15.0 | 29355 | nan | 0.7564 | 0.9173 | 0.8291 | 0.9673 |
|
96 |
|
97 |
|
98 |
### Framework versions
|