--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilBERT_without_preprocessing_grid_search results: [] --- # distilBERT_without_preprocessing_grid_search This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8909 - Precision: 0.8485 - Recall: 0.8467 - F1: 0.8467 - Accuracy: 0.8857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.9219 | 1.0 | 514 | 0.5751 | 0.8031 | 0.8211 | 0.8091 | 0.8658 | | 0.4593 | 2.0 | 1028 | 0.5435 | 0.8461 | 0.8372 | 0.8333 | 0.8789 | | 0.2853 | 3.0 | 1542 | 0.6109 | 0.8362 | 0.8385 | 0.8347 | 0.8794 | | 0.2159 | 4.0 | 2056 | 0.6320 | 0.8349 | 0.8681 | 0.8492 | 0.8847 | | 0.1531 | 5.0 | 2570 | 0.6988 | 0.8564 | 0.8532 | 0.8536 | 0.8901 | | 0.1223 | 6.0 | 3084 | 0.8081 | 0.8447 | 0.8476 | 0.8456 | 0.8833 | | 0.1073 | 7.0 | 3598 | 0.7644 | 0.8366 | 0.8501 | 0.8425 | 0.8833 | | 0.0958 | 8.0 | 4112 | 0.8606 | 0.8522 | 0.8468 | 0.8488 | 0.8847 | | 0.0769 | 9.0 | 4626 | 0.8468 | 0.8475 | 0.8482 | 0.8472 | 0.8857 | | 0.061 | 10.0 | 5140 | 0.8909 | 0.8485 | 0.8467 | 0.8467 | 0.8857 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3