--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilBERT_without_preprocessing_grid_search results: [] --- # distilBERT_without_preprocessing_grid_search This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7859 - Precision: 0.8423 - Recall: 0.8487 - F1: 0.8452 - Accuracy: 0.8769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.908 | 1.0 | 514 | 0.5671 | 0.7815 | 0.8256 | 0.7960 | 0.8511 | | 0.4351 | 2.0 | 1028 | 0.5301 | 0.8371 | 0.8439 | 0.8400 | 0.8715 | | 0.2993 | 3.0 | 1542 | 0.5461 | 0.8250 | 0.8605 | 0.8401 | 0.8754 | | 0.2186 | 4.0 | 2056 | 0.6724 | 0.8348 | 0.8517 | 0.8417 | 0.8745 | | 0.168 | 5.0 | 2570 | 0.6923 | 0.8410 | 0.8441 | 0.8417 | 0.8754 | | 0.1302 | 6.0 | 3084 | 0.6834 | 0.8301 | 0.8600 | 0.8432 | 0.8740 | | 0.1094 | 7.0 | 3598 | 0.7413 | 0.8400 | 0.8515 | 0.8453 | 0.8774 | | 0.0876 | 8.0 | 4112 | 0.7654 | 0.8383 | 0.8529 | 0.8452 | 0.8788 | | 0.0833 | 9.0 | 4626 | 0.7748 | 0.8474 | 0.8530 | 0.8499 | 0.8798 | | 0.0593 | 10.0 | 5140 | 0.7859 | 0.8423 | 0.8487 | 0.8452 | 0.8769 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3