LovenOO commited on
Commit
da2635a
1 Parent(s): 3b1b678

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.8262
24
- - Precision: 0.8491
25
- - Recall: 0.8536
26
- - F1: 0.8511
27
- - Accuracy: 0.8837
28
 
29
  ## Model description
30
 
@@ -43,7 +43,7 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 5e-05
47
  - train_batch_size: 16
48
  - eval_batch_size: 16
49
  - seed: 42
@@ -55,16 +55,16 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | 0.8922 | 1.0 | 514 | 0.5350 | 0.7953 | 0.8363 | 0.8092 | 0.8628 |
59
- | 0.4521 | 2.0 | 1028 | 0.5359 | 0.8214 | 0.8385 | 0.8282 | 0.8652 |
60
- | 0.2928 | 3.0 | 1542 | 0.5876 | 0.8264 | 0.8504 | 0.8367 | 0.8798 |
61
- | 0.2099 | 4.0 | 2056 | 0.6974 | 0.8288 | 0.8435 | 0.8351 | 0.8764 |
62
- | 0.1531 | 5.0 | 2570 | 0.8245 | 0.8367 | 0.8125 | 0.8232 | 0.8710 |
63
- | 0.1124 | 6.0 | 3084 | 0.7553 | 0.8349 | 0.8543 | 0.8435 | 0.8764 |
64
- | 0.1045 | 7.0 | 3598 | 0.7912 | 0.8452 | 0.8538 | 0.8492 | 0.8822 |
65
- | 0.0716 | 8.0 | 4112 | 0.7909 | 0.8422 | 0.8529 | 0.8471 | 0.8788 |
66
- | 0.0746 | 9.0 | 4626 | 0.8364 | 0.8462 | 0.8458 | 0.8458 | 0.8779 |
67
- | 0.0533 | 10.0 | 5140 | 0.8262 | 0.8491 | 0.8536 | 0.8511 | 0.8837 |
68
 
69
 
70
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.7859
24
+ - Precision: 0.8423
25
+ - Recall: 0.8487
26
+ - F1: 0.8452
27
+ - Accuracy: 0.8769
28
 
29
  ## Model description
30
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
  - train_batch_size: 16
48
  - eval_batch_size: 16
49
  - seed: 42
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.908 | 1.0 | 514 | 0.5671 | 0.7815 | 0.8256 | 0.7960 | 0.8511 |
59
+ | 0.4351 | 2.0 | 1028 | 0.5301 | 0.8371 | 0.8439 | 0.8400 | 0.8715 |
60
+ | 0.2993 | 3.0 | 1542 | 0.5461 | 0.8250 | 0.8605 | 0.8401 | 0.8754 |
61
+ | 0.2186 | 4.0 | 2056 | 0.6724 | 0.8348 | 0.8517 | 0.8417 | 0.8745 |
62
+ | 0.168 | 5.0 | 2570 | 0.6923 | 0.8410 | 0.8441 | 0.8417 | 0.8754 |
63
+ | 0.1302 | 6.0 | 3084 | 0.6834 | 0.8301 | 0.8600 | 0.8432 | 0.8740 |
64
+ | 0.1094 | 7.0 | 3598 | 0.7413 | 0.8400 | 0.8515 | 0.8453 | 0.8774 |
65
+ | 0.0876 | 8.0 | 4112 | 0.7654 | 0.8383 | 0.8529 | 0.8452 | 0.8788 |
66
+ | 0.0833 | 9.0 | 4626 | 0.7748 | 0.8474 | 0.8530 | 0.8499 | 0.8798 |
67
+ | 0.0593 | 10.0 | 5140 | 0.7859 | 0.8423 | 0.8487 | 0.8452 | 0.8769 |
68
 
69
 
70
  ### Framework versions