LovenOO commited on
Commit
af8ba1c
1 Parent(s): 318a085

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.7859
24
- - Precision: 0.8423
25
- - Recall: 0.8487
26
- - F1: 0.8452
27
- - Accuracy: 0.8769
28
 
29
  ## Model description
30
 
@@ -43,7 +43,7 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 3e-05
47
  - train_batch_size: 16
48
  - eval_batch_size: 16
49
  - seed: 42
@@ -55,16 +55,16 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | 0.908 | 1.0 | 514 | 0.5671 | 0.7815 | 0.8256 | 0.7960 | 0.8511 |
59
- | 0.4351 | 2.0 | 1028 | 0.5301 | 0.8371 | 0.8439 | 0.8400 | 0.8715 |
60
- | 0.2993 | 3.0 | 1542 | 0.5461 | 0.8250 | 0.8605 | 0.8401 | 0.8754 |
61
- | 0.2186 | 4.0 | 2056 | 0.6724 | 0.8348 | 0.8517 | 0.8417 | 0.8745 |
62
- | 0.168 | 5.0 | 2570 | 0.6923 | 0.8410 | 0.8441 | 0.8417 | 0.8754 |
63
- | 0.1302 | 6.0 | 3084 | 0.6834 | 0.8301 | 0.8600 | 0.8432 | 0.8740 |
64
- | 0.1094 | 7.0 | 3598 | 0.7413 | 0.8400 | 0.8515 | 0.8453 | 0.8774 |
65
- | 0.0876 | 8.0 | 4112 | 0.7654 | 0.8383 | 0.8529 | 0.8452 | 0.8788 |
66
- | 0.0833 | 9.0 | 4626 | 0.7748 | 0.8474 | 0.8530 | 0.8499 | 0.8798 |
67
- | 0.0593 | 10.0 | 5140 | 0.7859 | 0.8423 | 0.8487 | 0.8452 | 0.8769 |
68
 
69
 
70
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.7803
24
+ - Precision: 0.8448
25
+ - Recall: 0.8438
26
+ - F1: 0.8437
27
+ - Accuracy: 0.8783
28
 
29
  ## Model description
30
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
  - train_batch_size: 16
48
  - eval_batch_size: 16
49
  - seed: 42
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 1.0001 | 1.0 | 514 | 0.6163 | 0.7620 | 0.8133 | 0.7790 | 0.8394 |
59
+ | 0.4832 | 2.0 | 1028 | 0.5556 | 0.8131 | 0.8284 | 0.8166 | 0.8623 |
60
+ | 0.3307 | 3.0 | 1542 | 0.5381 | 0.8168 | 0.8425 | 0.8254 | 0.8691 |
61
+ | 0.2429 | 4.0 | 2056 | 0.6014 | 0.8289 | 0.8455 | 0.8353 | 0.8720 |
62
+ | 0.1849 | 5.0 | 2570 | 0.6600 | 0.8367 | 0.8408 | 0.8375 | 0.8740 |
63
+ | 0.1564 | 6.0 | 3084 | 0.6724 | 0.8219 | 0.8491 | 0.8333 | 0.8696 |
64
+ | 0.1316 | 7.0 | 3598 | 0.7511 | 0.8536 | 0.8481 | 0.8501 | 0.8808 |
65
+ | 0.1037 | 8.0 | 4112 | 0.7284 | 0.8438 | 0.8494 | 0.8461 | 0.8798 |
66
+ | 0.0946 | 9.0 | 4626 | 0.7584 | 0.8452 | 0.8470 | 0.8457 | 0.8798 |
67
+ | 0.0731 | 10.0 | 5140 | 0.7803 | 0.8448 | 0.8438 | 0.8437 | 0.8783 |
68
 
69
 
70
  ### Framework versions